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1 INTRODUCTION 

1.1 Problem Statement 

Each year, over 12,000 fatalities occur, resulting from errant vehicles departing the 

roadway. According to the Insurance Institute for Highway Safety and Highway Loss Data 

Institute (IIHS and HLDI) [1], single-vehicle run-off-road (ROR) crashes accounted for 6,928 

fatalities, which is over half of the total number of ROR fatalities in 2009. These run-off-road 

crashes included vehicles leaving the roadway and rolling over and/or hitting roadside hazards, 

such as bridge piers, utility poles, trees, fences, culverts, ditches, embankments, highway sign 

supports, and traffic barriers.  

As an attempt to minimize the risks of errant vehicles hitting roadside obstacles, 

engineers usually try to relocate hazards to be farther from the roadway based on the clear zone 

concept [2]. However, relocating the hazard is often disadvantageous or impossible due to space 

limitations. In these circumstances, engineers often choose to shield the hazard using safety 

devices, such as guardrails. However, guardrails are also a roadside hazard, and crashes with 

guardrails also result in ROR crash fatalities. Therefore, the use of guardrail should only be 

advised when the consequences of installing guardrail are less costly to society than other safety 

treatment options.  

For purposes of this study, guardrails are defined as semi-rigid barriers that are capable of 

absorbing energy during impact and safety redirecting or capturing an errant vehicle. However, 

more crashes are reported on most roadways after a guardrail is installed than occurred before 

guardrail installation. Over-exposure to guardrail impact may subject vehicle occupants to 

additional unnecessary risk. Thus, there exists an optimal guardrail length based on hazard size, 

crash severity, distance from the roadway, and nominal travel speed. If a guardrail length is too 

short, a large number of vehicles may run behind the guardrail and hit the hazard. Alternatively, 
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if the guardrail is too long, the crash frequency will increase. The increased crash costs generated 

from guardrail impacts could even outweigh the benefits from having a guardrail shielding the 

hazard (i.e., reduced crash cost). As a result, there is a need to determine an optimal guardrail 

length-of-need (LON). Even though recommended guardrail runout lengths from at least three 

major research studies are available, these findings could be outdated and/or flawed.  

1.2 Objective 

The research objectives were two-fold: (1) to quantify the frequency and likelihood of a 

vehicle travelling behind a guardrail and striking a shielded hazard and (2) to assess whether 

current guardrail length recommendations found in the AASHTO Roadside Design Guide (RDG) 

[2,3] are optimized for maximum cost-effectiveness and/or lowest crash costs.  

1.3 Scope 

The research objectives of this study were accomplished through the following tasks: 1) a 

literature review of previous LON studies; 2) collection of crash, guardrail length, and highway 

data; 3) crash report summary and data analysis; 4) benefit-to-cost analysis based on guardrail 

lengths, and 5) summary and limitations of results. 
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2 LITERATURE REVIEW 

2.1 Fixed-Object Vehicle Crashes   

Traffic fatalities caused by fixed-object crashes have accounted for approximately one-

fifth of all vehicle crash deaths since 1979. The number of traffic fatalities caused by fixed-

object crashes was 10,550 in 1979 and 7,272 in 2010, the most recent year of data at the start of 

this study, which corresponds to a reduction of 31 percent. During the same time period, the 

number of vehicle-miles traveled had steadily increased from 1.5 to 3.0 trillion-vehicle-miles 

traveled. This indicated that the number of motor vehicle crash deaths per 100 million vehicle 

miles traveled decreased from 3.35 in 1979 to 1.11 in 2010 [1]. The distribution of deaths in 

fixed-object crashes by object struck in 2010 is shown in Table 1. Tree crashes resulted in the 

largest number of fatalities, which accounted for half of all deaths in fixed-object crashes in 

2010, followed by utility poles and traffic barriers. The traffic barrier category included fatalities 

related to all concrete barrier, W-beam, box beam, and cable barrier crashes. 

Table 1. Distribution of Deaths in Fixed-Object Crashes by Object Struck, 2010 [1] 
Object struck Number % 

Tree 3,614 50 

Utility pole 1,015 14 

Traffic barrier 611 8 

Embankment 389 5 

Ditch 253 3 

Culvert 212 3 

Fence 175 2 

Wall 141 2 

Building 139 2 

Highway sign support 134 2 

Bridge pier 132 2 

Other 457 6 

Total 7,272 100 

 

Most fatal fixed-object crashes were single-vehicle crashes, as shown in Table 2. Over 50 

percent of fatal fixed-object crashes occurred in rural locations, whereas interstates and freeways 

represented only 14 percent of fatal crashes, as shown in Tables 2 through 4. Therefore, fatal 
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crashes were more likely to occur in locations with shorter clear-zone distances and limited 

access control with more hazards located close to the roadway. Travel speeds were likely related 

to fatal crash risk, since nearly half of these crashes occurred on facilities with a speed limit of 

55 mph (88 km/h) or greater, as shown in Table 5.  

Table 2. Distribution of Deaths in Fixed-Object Crashes by Crash Type, 2010 [1] 
Crash Type Deaths % 

Single-Vehicle Crashes 6,928 95 

Multiple-Vehicle Crashes 344 5 

All Crashes 7,272 100 

Table 3. Distribution of Deaths in Fixed-Object Crashes by Land Use, 2010 [1] 
Land Use Deaths % 

Rural 4,134 57 

Urban 3,037 42 

Total 7,272 100 

Table 4. Distribution of Deaths in Fixed-Object Crashes by Road Type, 2010 [1] 
Road Type Deaths % 

Interstates and freeways 1,054 14 

Other major roads 3,426 47 

Minor roads 2,647 36 

All road types 7,272 100 

Table 5. Distribution of Deaths in Fixed-Object Crashes by Speed Limit, 2010 [1] 
Speed Limit Deaths % 

No limit 22 <1 

<35 mph 1,003 14 

35-40 mph 1,389 19 

45-50 mph 1,446 20 

55+ mph 3,277 45 

Total 7,272 100 

 

2.2 Guardrail Crashes 

2.2.1 Overview of Guardrail Crashes 

W-beam guardrail was impacted during more fatal crashes than any other traffic barrier 

type, using IIHS data from 2009 [1]. Guardrail was involved in 432 fatal crashes, which 

represented approximately 6 percent of all fixed-object fatal crashes, as shown in Table 6. 

Rollovers occurred in approximately 17 percent of fatal guardrail crashes. 
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Table 6. Distribution of Deaths in Fixed-Object Crashes by Rollover Occurrence and Object 

Struck, 2010 [1] 

Object Struck 

Rollover No rollover All crashes 

Number % Number % Number % 

Tree 589 16 3,025 84 3,614 100 

Utility pole 175 17 840 83 1,015 100 

Guardrail 73 17 359 83 432 100 

Embankment 130 34 259 67 389 100 

Ditch 72 28 181 72 253 100 

Other 28 12 196 88 224 100 

Culvert 70 33 142 67 212 100 

Concrete 39 22 140 78 179 100 

Fence 35 20 140 80 175 100 

Wall 27 19 114 81 141 100 

Building 15 11 124 89 139 100 

Other post/pole 16 12 118 88 134 100 

Bridge pier 16 12 116 88 132 100 

Curb 9 8 104 92 113 100 

Bridge rail 12 15 69 85 81 100 

Boulder 11 28 28 72 39 100 

Total 1,317 18 5,955 82 7,272 100 

 

Bryden and Fortuniewicz conducted a study for the New York State Department of 

Transportation (NYSDOT) which investigated 3,302 traffic barrier crashes between July 1, 1982 

and June 30, 1983 to determine the effect of vehicle type and size, barrier type and mounting 

height, and roadway features on in-service safety performance of traffic barriers [4-5]. Crashes 

were selected in which the first harmful event was an impact with a traffic barrier. Results of the 

study are shown in Table 7.  

Table 7. Distribution of Crashes by Traffic Barrier [4] 
Barrier Type No. Crashes % 

Light-Post Traffic Barriers 1,887 57.15 

Heavy-Post Blocked-Out W-beam 94 2.85 

Concrete Safety Shape 90 2.73 

Obsolete Barriers 810 24.53 

Others, Unknown 421 12.75 

Total 3,302 100 

 

Crash data was segregated into sub-groups for analysis, as shown in Table 8. Historical 

barriers which did not meet crashworthiness requirements established by NYSDOT were 
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classified as “Obsolete Barriers”, whereas crashes which were in compliance with standards 

established at the time of the study were classified as “Contemporary Barrier” crashes. All 

crashes, including end-on, LON, and large-vehicle impacts, were classified in both sub-groups. 

A separate distinct group, “Ideal Barrier Crashes”, excluded end-on terminal impacts and only 

considered crashes which occurred within the design range of impact conditions.  

Table 8. Injury Severities Recorded for Roadside Crashes [4] 

  

Percent of Crashes at Severity Level 

Crash Category No. of Crashes Fatal A B C 

All 

Injury 

No 

Injury 

All 270,688 0.71  - - -  63.5 35.8 

All Roadside 40,163 1.5  - -  - 74.2 24.3 

All Barriers 3,302 1.33 9.45 25.8 22.4 57.7 40.9 

Obsolete Barriers 811 2.22 13.19 30.6 23.4 67.2 30.6 

Contemporary Barriers 2,071 1.16 9.37 27.0 24.6 61.0 37.9 

Ideal Barrier Crashes 1,313 0.53 7.31 25.1 24.7 57.1 42.4 

 

Several trends were observed from the crash data shown in Table 8. Run-off-road crashes 

resulted in fatalities more than twice as often as occurred in all crashes. Barrier crashes were 

generally less severe than all roadside crashes, although fatal crashes into obsolete systems 

occurred at nearly double the rate of contemporary barriers. Crashes which occurred away from 

end terminals, involved contemporary and well-maintenanced barriers, and which occurred with 

impact speeds and angles within the design criteria resulted in fewer fatal and serious injuries 

than barrier crashes which did not meet those criteria. As a result, many fatal and serious injury 

crashes with guardrail were attributable to problems with maintenance and adherence to design 

and construction standards, involved older, non-compliant systems, or were impacted with 

speeds or angles beyond design conditions. Bryden and Fortuniewicz estimated that 94 percent 

of all-barrier impacts and 97.6 percent of ideal-barrier impacts resulted in no injury or fatality 

when estimates for non-reported collisions were considered [5].  
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2.2.2 End Terminal Crash Severity 

The misclassification of terminals as longitudinal barriers can also lead to 

overrepresentation of guardrail crash severity. End terminal crashes are more likely to be 

reported as compared to crashes occurring within the LON. Thus, terminal crashes may 

adversely affect guardrail severe crash rates; since, terminal impacts tend to be more severe. For 

example, Griffin examined the performance of turned-down guardrail ends using data from 1,087 

crashes in Texas and compared it to the safety performance of guardrail collisions [6]. He found 

that fatalities were much more common on turned-down ends, as shown in Table 9.  

Table 9. Distribution of Guardrail Crashes on Texas State-Maintained Highways by Point of 

Impact [6] 

  

Crashes on Turned Down 

Ends 

Crashes Not on Turned Down 

Ends 

  
No. % No. % 

Guardrail 

Crashes 

Non-Fatal Crashes 700 95.1 2,784 98.2 

Fatal Crashes 36 4.9 51 1.8 

 

Griffin also found that rollovers occurred in 72 percent of fatal crashes and 36 percent of 

all turned-down end crashes as compared to 54 percent of fatal crashes and 12 percent of all 

crashes occurring within the LON. Although this research contributed to the eventual 

recommendation not to install turned-down ends and thus represents a historical feature, this 

study demonstrated the disproportionate risk of severe crash results in end-on collisions as 

compared to crashes occurring within the LON. 

2.2.3 Most Harmful Event  

It is not always possible to attribute the severity of the crash to the barrier impact only. 

The first harmful event is usually coded in lieu of the most harmful event, because determination 

of the most severe event may be subjective. Because of this, the contribution of the barrier to 

crash severity may be overrepresented. Viner studied the relationship between the first and the 
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most harmful events, and the results are shown in Table 10 [7]. Crashes involving guardrail, 

concrete barrier, bridge rail, and impact attenuators were commonly the first event during fatal 

crashes. However, barrier crashes were the most severe event during a crash sequence in less 

than half of those crashes. This result suggests that guardrail crashes are less severe in general 

than impacts with other features, but also indicates that vehicles may be involved in a 

subsequent, severe impact after being redirected by a traffic barrier. 

Table 10. Harmful Events in Ran-Off-Road Fatalities [7] 
Object Struck / Event 

Sequence 

First Harmful Event 

(FHE) 

Most Harmful Event 

(MHE) 

Ratio  

MHE /FHE 

Tree 2,870 3,246 1.13 

Overturn 2,492 4,820 1.93 

Utility Pole 1,235 1,298 1.05 

Embankment 1,187 601 0.51 

Guardrail 1,101 456 0.41 

Ditch 750 302 0.40 

Other 565 613 1.08 

Culvert 537 281 0.52 

Curb 506 117 0.23 

Other fixed Object 461 219 0.48 

Other Post 457 237 0.52 

Fence 421 156 0.37 

Sign Post 295 99 0.34 

Bridge Pier 211 255 1.21 

Concrete Traffic Barrier 211 83 0.39 

Bridge Rail 194 118 0.61 

Luminaire Support 148 146 0.99 

Wall 143 127 0.89 

Boulder 133 76 0.57 

Bridge End 122 95 0.78 

Building 101 143 1.42 

Immersion 98 354 3.61 

Shrubbery 66 13 0.20 

Other Noncollision 53 40 0.75 

Other Traffic Rail 33 16 0.48 

Fire Hydrant 28 9 0.32 

Impact Attenuator 7 3 0.43 

Overhead Sign Post 6 11 1.83 

Unknown 4 272 68 

Fire/Explosion 0 229 - 

Total 14,435 14,435  
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2.2.4 Severe Barrier Crashes 

Recently, the American Association of State Highway and Transportation Officials 

(AASHTO) adopted the Manual for Assessing Safety Hardware (MASH) [8], which reflected the 

state-of-the-art in crashworthiness testing of roadside features, such as guardrail. Crash test 

impact conditions and crashworthiness criteria were similar to those presented in the National 

Cooperative Highway Research Program (NCHRP) Report No. 350 [9]. Those crash conditions 

were supported by the reconstruction of more than 890 run-off-road crashes occurring between 

1997 and 2004 [10]. The 62.1 mph (100.0 km/h) impact event occurring at 25 degrees with 

respect to the roadway, which was recommended for Test Level 3 (TL-3) impact conditions in 

both NCHRP Report No. 350 and MASH, represented approximately the 85
th

 percentile impact 

speed and departure angle of run-off-road crashes. These crash conditions were intended to 

approximate a practical worst-case crash condition. 

Research has shown that barrier penetrations and rollovers are overrepresented with 

respect to serious crashes, and may be correlated with more energetic impact conditions than are 

utilized in full-scale crash testing. Albuquerque et al. found that the 85
th

 percentile impact angles 

associated with crashes occurring on high-speed roadways are higher than the 25-degree impact 

angle currently recommended by MASH [11]. In fact, Albuquerque et al. found that 

approximately 30 percent of the single-vehicle run-off-road crashes on interstate highways had 

an impact angle of 25 degrees or higher, and more than two percent of these crashes had both 

impact speeds higher than 65-mph and impact angles higher than 25 degrees. Crashes involving 

these impact conditions would be characterized as collisions that are beyond the performance 

capability of most TL-3 guardrail systems.  

Motorcyclist crashes also contribute to increased severe crash rates. Gabler found that 

motorcycle crashes are the leading source of fatalities in guardrail crashes, and motorcycle riders 
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account for more fatalities than passengers of any other vehicle type involved in a guardrail 

collision [12]. He also determined that the relative fatality risk in guardrail collisions for 

motorcycle riders was more than 80 times higher than for passenger car occupants. Daniello and 

Gabler found that motorcycle collisions with guardrails are seven times more likely to be fatal 

than collisions with the ground, and were the most hazardous barrier type due to post strength, 

post spacing, and barrier stiffness [13]. In Bryden and Fortuniewicz’s investigations conducted 

on New York’s state maintained highways, motorcycle crashes had the highest severe crash rate 

at approximately 50 percent [4]. The remaining 50 percent of identifiable motorcyclist crashes 

were associated with moderate to minor injuries.  

Severe crash rates are also affected by unreported crashes. Over a 12-month span, Galati 

filmed a 20-mile (32-km) length of median barrier on the Schuylkill freeway in Philadelphia and 

painted it white once a month over a 12-month period in the 1960s [14]. Scuff marks and other 

damage were immediately recorded and repaired, and matched with the police report records. A 

total of 1,085 minor and significant impacts were recorded over this period. Galati concluded 

that only 13 percent of the crashes were reported. Later, Carlson compiled crash records over a 

5-year period in the 1970s to evaluate the safety performance of highway safety devices [15]. He 

determined that 10 percent of all longitudinal barrier crashes were reported. These research 

records suggested that less than 15 percent of crashes are reported. Crashes in which the 

minimum property-damage only (PDO) threshold for repair or replacement was not exceeded, 

the vehicle was drivable after the crash, or involving individuals seeking to avoid contact with 

law enforcement may not be reported. Because reported crashes are more likely to involve 

impaired vehicles and/or injured people, the injury distribution for reported crashes are usually 

skewed towards higher injury levels than will be globally observed. By accounting for 

unreported crashes and secondary, more severe impacts, Michie and Bronstad estimated that only 
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2 to 3 percent of all crashes into contemporary, properly-installed and maintained guardrails may 

contribute to injury or fatality [16].  

Unreported crashes may subsequently require maintenance to the guardrail system, which 

may be associated with additional costs. Furthermore, the injury severity and frequency of 

reportable crashes also contributes to increased societal costs. An appropriate LON must be 

determined for every guardrail installation. The LON must be long enough to capture most errant 

vehicles, but short enough to prevent the cost of the increased number of crashes resulting from 

increased exposure from exceeding the benefit of reduced crash severity. 

2.3 Guardrail Length-of-Need 

Calculation of the necessary LON of guardrail has historically been based on 

recommendations provided by AASHTO, as shown in Figure 1 [3]. The LON was calculated 

based on a line drawn from the roadway to the furthest extent of the hazard within the clear zone 

which warranted shielding. The intersection of that line and the front face of the guardrail 

corresponded to the beginning of the LON. 

 
Figure 1. Approach Barrier Layout Variables [3] 
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The guardrail runout length is therefore the distance that a vehicle would have to travel in 

order to pass behind the guardrail and strike the hazard, as measured parallel to the roadway. 

Two research studies used roadside encroachment data to determine guardrail runout lengths: 

Hutchinson and Kennedy (H&K) in the 1960s [17] and Cooper in the 1970s [18]. However, the 

validity of these conclusions is the subject of considerable controversy [19]. Criticisms of the 

H&K research argued that some encroachment distances were measured from vehicle tracks 

during winter months when medians could be snow-covered, which may have resulted in longer-

than-normal encroachments, and there was no means for determining whether these 

encroachments were controlled or uncontrolled. In addition, the data may be skewed towards 

longer encroachments since shoulders were paved. Therefore, there was no means to identify 

vehicle tracks from vehicles which left the road, but stayed within the shoulder area. In contrast, 

encroachment data from the Cooper study was collected from a wide variety of roadside 

conditions since many two-lane roadway sections were included. These roadways may have very 

different cross-section profiles (e.g., some may have steeper slopes than others) that may not 

compare very well with the typical U.S. interstate highway cross-sections. Runout lengths 

suggested by H&K are shown in Table 11.  

Research performed by Sicking and Wolford, as well as by Coon, has suggested that 

Cooper’s encroachment data provided more accurate and shorter guardrail runout lengths [20-

21]. These researchers used benefit-cost analysis techniques to determine the appropriate LON 

for guardrail. They found guardrail LONs which were much shorter than those recommended by 

the 2006 RDG [2]. The 2006 RDG guardrail runout lengths are shown in Table 12.  
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Table 11. Suggested Runout Lengths for Barrier Design by Hutchinson and Kennedy [17] 

 
Runout Length, m (ft), at Indicated Traffic Volume (ADT) 

Design Speed 

km/h [mph] 
Over 6,000 2,000-6,000 800-2,000 Under 800 

110                        

(70) 
145 (475) 

135                      

(445) 

120                      

(395) 

110                      

(360) 

100                        

(60) 

130                      

(425) 

120                      

(400) 

105                      

(345) 

100                      

(330) 

90                          

(55) 

110                      

(360) 

105                      

(345) 

95                        

(315) 

85                        

(280) 

80                          

(50) 

100                      

(330) 

90                        

(300) 

80                        

(260) 

75                        

(245) 

70                          

(45) 

80                        

(260) 

75                        

(245) 

65                        

(215) 

60                        

(200) 

60                          

(40) 

70                        

(230) 

60                        

(200) 

55                        

(180) 

50                         

(165) 

50                          

(30) 

50                        

(165) 

50                        

(165) 

45                        

(150) 

40                        

(130) 

 

Table 12. Runout Length Values Recommended in 2006 RDG [2] 

 
Runout Length Given Traffic Volume (ADT), m (ft) 

Design Speed 

km/h (mph) 
Over 6,000 2,000 to 6,000 800 to 2,000 Under800 

110 (68) 145 (475) 135 (443) 120 (394) 110 (360) 

100 (62) 130 (426) 120 (394) 105 (344) 100 (328) 

90 (55) 110 (360) 105 (344) 95 (312) 85 (279) 

80 (50) 100 (328) 90 (295) 80 (262) 75 (246) 

70 (43) 80 (262) 75 (246) 65 (213) 60 (191) 

60 (37) 70 (230) 60 (191) 55 (180) 50 (164) 

50 (31) 50 (164) 50 (164) 45 (148) 40 (131) 

 

Furthermore, recent research using real-world crash data was used to evaluate the H&K 

and Cooper data sets [20]. These studies suggested that guardrail runout lengths recommended 

by Cooper matched better with their findings as compared to guardrail runout lengths 

recommended by Hutchinson and Kennedy. Runout lengths suggested by Wolford and Sicking 

are displayed in Table 13. The 2011 version of the AASHTO RDG [3] adopted much shorter 

guardrail runout lengths as compared to the 2006 RDG [2], as shown in Table 14. 
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Table 13. Runout Length Values Recommended by Wolford and Sicking [20] 

 
Runout Length Given Traffic Volume (ADT), m (ft) 

Design Speed 

Km/h (mph) 
Over 10,000 5,000 to 10,000 1,000 to 5,000 Under 1,000 

113  (70) 110  (360) 91 (300) 79 (260) 67 (220) 

97  (60) 79  (260) 64 (210) 55 (180) 52 (170) 

80  (50) 64  (210) 52 (170) 46 (150) 40 (130) 

64  (40) 49  (160) 40 (130) 34 (110) 30 (100) 

48  (30) 34  (110) 27 (90) 24 (80) 21 (70) 

Table 14. Runout Length Values Recommended in 2011 RDG [3] 

 
Runout Length Given Traffic Volume (ADT), m (ft) 

Design Speed 

Km/h (mph) 
Over 10,000 5,000 to 10,000 1,000 to 5,000 Under 1,000 

128 (80) 143 (470) 131 (430) 116 (380) 101 (330) 

113 (70) 110 (360) 101 (330) 88 (290) 76 (250) 

97 (60) 91 (300) 76 (250) 64 (210) 61 (200) 

80 (50) 70 (230) 58 (190) 49 (160) 46 (150) 

64 (40) 49 (160) 40 (130) 34 (110) 30 (100) 

48 (30) 34 (110) 27 (90) 24 (80) 21 (70) 

 

A more recent research study conducted in Europe attempted to determine the required 

length of guardrails before hazards [22]. Researchers used data from reconstructed vehicle 

crashes, such as departure velocity and angle, as inputs in computer software to evaluate the 

trajectory and speed of vehicles travelling behind the guardrail. Researchers determined that the 

minimum length of a guardrail required to prevent impact with the shielded hazard should be 767 

feet (234 meters) at a departure speed of 80 mph (130 km/h). If collision speeds of 24 mph (40 

km/h) and 39 mph (64 km/h) are acceptable, the length of guardrail would be reduced to 

approximately 698 feet (213 m) and 590 feet (180 m), respectively. The authors conclude that, 

based on real-world crash data, guardrails were too short in 8 percent of passenger run-off-the-

road crashes. The authors did not address any additional crash effects caused by the increased 

length of guardrail. 
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3 DATA COLLECTION 

3.1 Crash Data 

Guardrail, hazard, traffic volume, and crash data were collected from eight interstate 

highways in Kansas: I-35, I-70, I-135, I-235, I-335, I-435, I-470, and I-635. Approximately 

42,000 crash reports spanning between 2002 and 2006 were reviewed, and crashes that occurred 

on interstate highways were extracted for further consideration. Non-interstate crashes and 

crashes in which guardrail was not present were excluded. In addition, guardrail crashes located 

at interstate ramps, interchanges, or access points were excluded, because those guardrails are 

infrequently used to shield fixed objects.  

Scaled satellite images obtained from Google Maps were used to measure guardrail 

lengths, offsets from the face of the guardrail to the edge of the travel way, and whether the 

guardrail was located on the right or left side of the road at crash scenes. Based on estimates 

derived from scene diagrams and crash narratives, impacts were segregated by impact location 

which occurred at the first (upstream), second, third, or fourth (downstream) quarter-lengths of 

guardrail. It was not possible to determine the exact point where the vehicle struck the guardrail; 

since, this was not recorded and scene diagrams were not drawn to scale. If the impact location 

occurred near the transition between quarter-segments and if researchers were not confident that 

the crash could be accurately classified by a single guardrail segment, it was sometimes 

classified as first/second quarter, second/third quarter, or third/fourth quarter. In addition to 

guardrail positions, the type of fixed-object hazard, the lateral offset from the edge of the travel 

way, and the distance from the hazard to the leading edge of the guardrail were also measured. 

Crash data included crash severity information, crash location (i.e., milepost, travel 

direction, and/or point of reference), and recorded crashes in which the vehicle impacted the 

guardrail terminal, ran behind the guardrail installation, or vehicle struck the shielded obstacle. 
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An example of a crash in which the vehicle was traveling southbound and drifted off of the road 

into the median is shown in Figure 2. After passing behind the upstream end of the left-side 

guardrail into the median, the vehicle redirected back toward the travel lanes, impacted the back 

side of the left-side guardrail, and rolled.  

 

 
 

Figure 2. Example Crash Narrative and Diagram 

A satellite photograph of the crash scene is shown in Figure 3. Using satellite imagery, 

the distance between the upstream end of the left-side guardrail and the hazard was measured 

parallel with the roadway, and was denoted with a red line. The distance between the end of the 
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guardrail and the vertical face of the bridge deck was denoted as “X” which was approximately 

430 feet (131.1 m). It was not possible to measure the distance between the hazard and the 

vehicle in this crash because the overpass obscured the pier.  

 
Figure 3. Plan View of Crash Site  

In order to overcome this problem, a tangential bridge width, “y”, was determined using 

the scaled plan view and determined to be 30 ft (9.1 m), as shown in Figure 4. Then, using the 

Street View application, the bridge pier was approximately centered with respect to the bottom 

of the bridge, as shown in Figure 5. Thus, the distance from the upstream end of the guardrail to 

the hazard was approximately equal to X + ½ y, or 430 ft (131.0 m) + 15 ft (4.6 m), equal to 445 
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ft (135.6 m). The guardrail was terminated at approximately the downstream end of the bridge 

pier. The width of the bridge pier was estimated to be 4 ft (1.2 m) and centered with respect to 

the bridge. Since it was estimated that the guardrail terminated at approximately the downstream 

edge of the bridge pier measured at an angle parallel to the overpass roadway, an additional 2 ft 

(0.6 m) was added to account for the outer section of the bridge pier, for a total guardrail length 

of 447 ft (136.2 m). 

. 
Figure 4. Measurement of Bridge Width 

 
Figure 5. Street View of Crash Site  

The lateral offset from the front face of the guardrail to the edge of travel way was 

measured radially with the curve, as shown in the upper-left corner of Figure 3. The lateral offset 
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to the guardrail was determined to be 8 ft (2.4 m) in this crash. Similarly, the lateral offset to the 

hazard was determined to be 22 ft (6.7 m), which was found by dividing the median width of 48 

ft (14.6 m) in half, and subtracting half the diameter of the bridge pier. 

3.2 Variables Used and Data Sources 

A total of 19 different parameters used to describe each crash are shown in Table 15. 

Table 15. Variables Included in the Database 
DATA 

SOURCE 
VARIABLE NAME DESCRIPTION EXAMPLE 

Crash 

Report 

Crash Number Crash Identification Number 20030036047 

Crash Severity Highest Injury Level Resulted from the Crash PDO 

Guardrail Location Roadside or Median Median 

Guardrail Portion Struck First, Second, Third, or Fourth Quarter 
Second/Third 

Quarter 

Terminal Struck Yes or No No 

Ran Behind Guardrail Yes or No Yes 

Struck Hazard Yes or No No 

Interstate Name 
I-35, I-70, I-135, I-235, I-335, I-435, I-470, or 

I-635 
I-135 

Milepost Number Crash Location 33 

Direction of Vehicle 

Travel 

Used to Identify the Direction the Vehicle 

Was Traveling at the Time of Crash 
South 

Reference Point 

Used to Help Identifying Crash Location. 

Especially, Whenever Milepost Information 

Was Missing. 

Exit 34 

Distance and Direction 

from the Reference Point 

Used to Locate Crash Location Using the 

Reference Point 
1.9 miles south 

Satellite 

Maps 

and 

Photos 

Guardrail Length (ft) 
Distance from the Upstream Guardrail End to 

the Downstream Hazard End. 
447 

Guardrail Lateral Offset 

(ft) 

Distance from the Front Face of the Guardrail 

to the Travel Way Edge. 
8 

Hazard Description Hazard Type Bridge Pier 

Hazard Lateral Offset (ft) 
Distance from the Front Face of the Guardrail 

to the Back of the Hazard. 
26 

Guardrail Site 

Identified by Highway Name and Milepost 

Number. Used to Match Up with Traffic 

Volume Data (i.e., ADT).  

I-135 N, 

Milepost 3 

Kansas 

DOT 

ADT 
Average Annual Daily Traffic for Each Year 

and Guardrail Site. 
13,500 

Guardrail and Terminal 

Cost 

Guardrail Cost Per Linear Foot and Terminal 

Cost Per Unit. Used in the B/C Analysis. 

Guardrail = 

US$ 29.77/ft 

Terminal = US$ 

1,988/Unit  
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4 DATA ANALYSIS 

4.1 Crash and Guardrail Statistics 

The crash data was separated by roadway, and the results were compiled in Table 16. 

Interstates I-70, I-35, and I-135 accounted for 86 percent of the total mileage and 73 percent of 

the guardrail-related crashes. The interstates with the most frequent crashes were I-235 (1.82 

crashes/mile) and I-635 (1.57 crashes/mile). 

Table 16. Crash Frequency Distribution by Road Name 
Road Mileage # Crashes % 

I-635 17.81 28 4.28 

I-470 27.44 13 1.99 

I-235 33.03 60 9.17 

I-435 56.07 54 8.26 

I-335 100.35 20 3.06 

I-135 191.48 105 16.06 

I-35 470.81 147 22.48 

I-70 847.54 227 34.71 

Total 1,744.53 654 100 

 

Injury distributions were plotted by roadway, as shown in Figure 6. Fatal, injury, and 

PDO crashes constituted 1, 35, and 64 percent of crashes, respectively. The highest and lowest 

percent of injury crashes occurred on I-635 and I-35 and were equal to 57 and 26 percent, 

respectively. One reason for the discrepancy between injury rates on these two roadways was the 

proximity and frequency of fixed objects located close to the roadway. For example, interstate I-

635 is located in an urban area with fixed objects and guardrails placed much closer to the 

traveled way as compared to most fixed objects and guardrails on interstate I-35, which is mostly 

located in rural areas. 



August 12, 2014 

MwRSF Report No. TRP-03-284-14 

21 

 
Figure 6. Crash Severity Distribution by Road Name 

The mean, median, and 85
th

 percentile values for guardrail length on each interstate 

highway are shown in Figure 7. The median, mean, and 85
th

 percentile guardrail length values 

for all of the interstate roadways were 211, 272 and 337 ft (64.3, 82.9, and 102.7 m), 

respectively. Typical guardrail lengths were the longest on I-70, with median, mean, and 85
th

 

percentile values equal to 282, 332, and 392 ft (85.9, 101.1, and 119.4 m), respectively. In 

contrast, interstate I-635 typically had the shortest guardrail lengths, with median, mean, and 85
th

 

percentile values equal to 122, 164, and 211 ft (37.1, 49.9, and 64.3 m), respectively. One reason 

for longer guardrail lengths on I-70 compared to I-635 was that hazards, which were protected on 

I-70, were in rural areas. In addition the hazards were usually wider (such as rivers) and located 

far from the roadway, and required longer guardrail lengths. 

The number and type of shielded hazards are shown in Table 17. Slopes and drop-offs at 

bridge locations and bridge piers were the most common shielded hazards. These hazards 

accounted for more than 70 percent of all obstacles shielded by guardrails.  
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Figure 7. Statistics for Guardrail Length 

Table 17. Frequency of Shielded Hazards by Hazard Type 

Hazard Type 
No. of 

Hazards 

Percent of 

Hazards 

Bridge/Overpass 

(Bridge Rail) 
1,114 39.09 

Bridge Pier 984 34.53 

Culvert 491 17.23 

Sign 190 6.67 

Slope 63 2.21 

Other 8 0.28 

Total 2,850 100.00 

 

Mean, median, and 85
th

 percentile values for guardrail length by shielded roadside 

hazards are shown in Figure 8. Guardrails which shielded bridge abutments had the highest mean 

and 85
th

 percentile lengths. This may be attributed to the fact that these systems not only are 

installed to prevent errant drivers from impacting the bridge abutment, but also to prevent drivers 

from travelling down steep roadside slopes often found at these locations.. These same concerns 

apply for guardrail installations located at culverts, which were only slightly shorter than bridge 

rail counterparts.  
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Figure 8. Statistics of Guardrail Length Distances by Shielded Hazard 

The mean, median, and 85
th

 percentile values for guardrail lateral offset were 

approximately 17, 17, and 23 ft (5.2, 5.2, and 7.0 m), respectively, for all roadways, as shown in 

Figure 9. Likewise, the mean, median, and 85
th

 percentile guardrail offsets plotted by the 

shielded hazard type are shown in Figure 10. Recall that guardrail lateral offsets were measured 

between edge of the travel way and the back face of the hazard. Recorded hazard offsets were the 

largest on I-435, with median, mean, and 85
th

 percentile values equal to 26, 23, and 37 ft (7.9, 

7.0, and 11.3 m), respectively. Road I-470 had the shortest guardrail lateral offset.  
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Figure 9. Statistics for Guardrail Lateral Offset 

 
Figure 10. Statistics of Guardrail Lateral Offset Distances by Shielded Hazard 

Mean, median, and 85
th

 percentile values for hazard lateral offset were approximately 26, 

23, and 40 ft (7.9, 7.0, and 12.2 m), respectively, as shown in Figure 11. Mean, median, and 85
th
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percentile values for hazard lateral offset were also plotted based on shielded hazard, as shown in 

Figure 12. Recall, hazard lateral offsets were measured as the distance from the traveled way 

edge to the back of the roadside hazard. Interstate I-135 had the largest hazard offsets on average 

with a median and mean values equal to 29 and 27 ft (8.8 and 8.2 m), respectively. Hazard 

offsets were also relatively consistent throughout I-135, with an 85
th

 percentile offset of 32 ft 

(9.8 m), which was marginally higher than the median and mean offsets of 29 and 27 feet (8.8 

and 8.2 m), respectively. Slopes and drop-offs (such as at bridges), roadside slopes, and bridge 

embankments had the largest lateral offsets, whereas bridge piers, poles, and signs had the lowest 

lateral offsets. 

 
Figure 11. Statistics for Hazard Lateral Offset 
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Figure 12. Statistics of Hazard Lateral Offset Distances by Shielded Hazard 

Impacts with terminals were also extracted and considered. Fifteen terminal impacts were 
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observations for the shielded hazards were determined and are shown in Table 20. Guardrail 

shielding slope and bridge hazards contributed to four fatalities, and a guardrail shielding a 

bridge pier contributed to one additional fatality. Crashes into guardrail shielding a culvert had 

the lowest observations of fatality and injury at 28 percent.  

Table 19. Crash Distribution by Shielded Hazard by Road Name 

  

I-135 I-35 I-70 I-435 I-235 I-335 I-470 I-635 All 

Bridge 

Embankment 

# 2 4 1 0 0 0 0 0 7 

% 28.57 57.14 14.29 0 0 0 0 0 100 

Pole/Sign 
# 10 10 10 4 17 0 5 17 73 

% 13.70 13.70 13.70 5.48 23.29 0 6.85 23.29 100 

Culvert 
# 9 20 42 0 0 8 2 0 81 

% 11.11 24.69 51.85 0 0 9.88 2.47 0 100 

Bridge Pier 
# 24 55 57 7 2 8 0 4 157 

% 15.29 35.03 36.31 4.46 1.27 5.10 0.00 2.55 100 

Bridge 

Rail/Slope 

# 60 58 117 43 41 4 6 7 336 

% 17.86 17.26 34.82 12.80 12.20 1.19 1.79 2.08 100 

Table 20. Crash Distribution by Shielded Hazard by Crash Severity 

  

Crash Severity 
No. of 

Crashes 

Percent of 

Crashes 

Hazard 

Type 

Bridge 

Embankment 

Fatal 0 0.00 

Injury 4 57.14 

PDO 3 42.86 

Pole/Sign 

Fatal 0 0.00 

Injury 30 41.10 

PDO 43 58.90 

Culvert 

Fatal 0 0.00 

Injury 23 28.40 

PDO 58 71.60 

Bridge Pier 

Fatal 1 0.64 

Injury 52 33.12 

PDO 104 66.24 

Bridge 

Rail/Slope 

Fatal 4 1.19 

Injury 120 35.71 

PDO 212 63.10 

 

Approximately 62 percent of crashes occurred with guardrails installed on the right side 

of the roadway, as shown in Figure 13. Crash severities were relatively insensitive to which side 

of the road the guardrail was installed, as shown in Table 21. The crash severity distribution of 

right-side crashes is not significantly different from left-side crashes.  
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Figure 13. Percent of Crashes per Crash Location 

Table 21. Distribution of Crash Severity by Guardrail Location 
 

 

Crash Severity 

No. of 

Crashes 

Percent of 

Crashes 

Guardrail 

Location 

Left 

Fatal 4 1.6 

Injury 83 33.5 

PDO 161 64.9 

Right 

Fatal 1 0.25 

Injury 146 36.0 

PDO 259 63.8 
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injury distribution did not appear to be dependent on barrier impact location. It was not possible 

to determine the impact region where the guardrail was struck for many crashes due to crash 

scene diagrams which were not drawn to scale or which were not completed. A similar 
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similar results, as shown in Table 23. 
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Table 22. Crash Distribution by Shielded Hazard by Portion of Guardrail Struck 
Injury Level Portion of Guardrail Struck # % 

PDO 

First Quarter 60 61.2 

First/Second Quarter 12 12.2 

Second Quarter 2 2.0 

Second/Third Quarter 12 12.2 

Third/Fourth Quarter 2 2.0 

Fourth Quarter 0 0.0 

Injury + 

Fatality 

First Quarter 52 59.1 

First/Second Quarter 11 12.5 

Second Quarter 4 4.6 

Second/Third Quarter 10 11.4 

Third/Fourth Quarter 5 5.7 

Fourth Quarter 6 6.8 

Table 23. Crash Distribution by Guardrail Location by Portion of Guardrail Struck 
Guardrail Location Portion of Guardrail Struck # % 

Left 

First 41 67.2 

First/Second 7 11.5 

Second 1 1.6 

Second/Third 5 8.2 

Third/Fourth 3 4.9 

Fourth 4 6.6 

Right 

First 71 56.8 

First/Second 16 12.8 

Second 5 4.0 

Second/Third 17 13.6 

Third/Fourth 6 4.8 

Fourth 10 8.0 

 

Vehicle trajectories behind guardrail were identified and tabulated, as shown in Table 24. 

Approximately 3.5 percent of crashes occurring on I-70 involved vehicles traversing behind the 

systems, compared to I-35 which experienced only 1.4 percent of crashes traversing behind the 

guardrail. Furthermore, no fatalities were involved in run-behind guardrail crashes and only five 

out of the fourteen run-behind guardrail crashes involved injuries, as shown in Table 25. 

Table 24. Distribution of Ran-Behind Guardrail Crashes 
 

  
I-135 I-35 I-70 I-435 I-235 I-335 I-470 I-635 All 

Ran-

Behind 

Guardrail 

Yes 
# 2 2 8 0 1 1 0 0 14 

% 1.9 1.4 3.5 0.0 1.7 5.0 0.0 0.0 2.1 

No 
# 103 145 219 54 59 19 13 28 640 

% 98.1 98.6 96.5 100.0 98.3 95.0 100 100 97.9 
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Table 25. Crash Severity Distribution by Ran-Behind Guardrail Crashes 
 

  
# % 

Ran-

Behind 

Guardrail 

No 

Fatal 5 0.78 

Injury 224 35.0 

PDO 411 64.2 

Yes 

Fatal 0 0.0 

Injury 5 35.7 

PDO 9 64.3 

 

Only two out of the fourteen ran-behind-guardrail crashes involved a vehicle striking the 

shielded hazard, resulting in one PDO crash and one injury crash, as shown in Figures 14 and 15. 

Thus, a total of 0.3 percent of all crashes involved a vehicle striking the shielded hazard. One 

vehicle impacted a utility pole, and the other impacted the upstream end of a guardrail system, 

traversed behind the system, and rolled over at a culvert.  

 

Figure 14. Scene Diagram and Crash Narrative, Ran-Behind Guardrail Crash No. 1 

 

 
Figure 15. Scene Diagram and Crash Narrative, Ran-Behind Guardrail Crash No. 2 
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Neither of the hazards located behind the guardrail that were impacted during the two 

ran-behind-guardrail crashes were the primary hazards (i.e., hazards which precipitated the need 

for a crashworthy barrier). In both crashes, the guardrail was used to shield a bridge pier, and the 

culvert and utility pole were secondary (i.e.,incidental) hazards which happened to be shielded 

by the guardrail as well. Although the guardrail in ran-behind-guardrail crash no. 1 appeared to 

be lengthened due to secondary hazard (utility pole), the crash vehicle was a large truck. No 

guardrail is proven to successfully redirect a large truck impact. Guardrail length may not have 

been important for ran-behind-guardrail crash no. 1. As a result, the statistical analysis was 

believed to be conservative by over-representing the likelihood of a vehicle impacting a shielded 

object, and by representing a secondary hazard 

4.2 Statistical Analysis of Crash Relationships 

Crash data was analyzed to determine statistical relationships between the variables 

identified in Table 15. Crash severity and guardrail and hazard characteristics were analyzed by 

prescribing a binary coding of 1 for injury or fatality and 0 for PDO crash. Four different binary 

logit models were used with the independent variables: guardrail length; guardrail lateral offset; 

hazard lateral offset, and left- or right-side guardrail location. The p-values obtained by 

comparing guardrail length, guardrail lateral offset, hazard lateral offset, and guardrail location 

with crash severity were 0.71, 0.23, 0.27, and 0.77, respectively. None of these factors had a 

statistically significant impact on crash severity. 

Hazard lateral offset was plotted against guardrail lengths, as shown in Figure 16. The 

correlation coefficient of 0.35 was highly significant (p-value < 0.0001), which suggests that 

guardrail length increased as the hazard was located farther from the traveled way edge. This 

finding was consistent with AASHTO RDG guidelines. Guardrail lengths were different for 

diffuse hazards, such as drop-offs at bridges, roadside slopes, and embankments, compared to 
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point (i.e., discrete) hazards, such as signs, trees, poles, and bridge piers. Point hazards were 

typically associated with shorter lengths of guardrail, predominantly upstream of the hazard.  

 
Figure 16. Guardrail Length vs. Hazard Lateral Offset 

Guardrail lateral offset was also plotted against guardrail lengths, as shown in Figure 17. 

The correlation coefficient was 0.21 and was highly significant (p-value < 0.0001). This means 

that guardrail length decreased as the guardrail was located farther from the traveled way edge. A 

separate plot of guardrail lateral offset versus hazard lateral offset indicated that guardrail was 

generally located farther from the roadway whenever possible, as shown in Figure 18. The 

correlation coefficient was 0.24 and was highly significant (p-value < 0.0001). 

Cumulative distributions of the guardrail lateral offset and guardrail length were plotted 

and are shown in Figures 19 and 20, respectively. In general, guardrails located on the right side 

of the road were located closer to the roadway and were longer than guardrails located on the left 

side of the road. 
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Figure 17. Guardrail Length vs. Guardrail Lateral Offset 

 
Figure 18. Guardrail Lateral Offset vs. Hazard Lateral Offset 
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Figure 19. Guardrail Lateral Offset Distribution by Guardrail Location 

 
Figure 20. Guardrail Length Distribution by Guardrail Location 
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10.0 m) while 10 percent of were located between 15 and 25 ft (4.6 and 7.6 m) from the edge of 

the travel way. Right-side hazards were distributed throughout the roadway segments. 

Approximately 40 percent of the right-side hazards were located within 15 ft (4.6 m) of the 

roadway. Many of the hazards with large hazard lateral offsets corresponded to slope and 

embankment hazards.  

 
Figure 21. Hazard Lateral Offset Distribution by Guardrail Location 
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Figure 22. Tree Diagram of Crash Outcomes 

The probability of each crash severity level given an event has occurred was calculated 

using conditional probabilities. Conditional probability is the probability of an event A occurring 

given some event B has occurred, and it may be denoted by P(B/A), as defined by Equation 1. 

The denominator indicates the probability of both events occurring. 

  (  ⁄ )  
 (   )

 ( )
     ( )    Equation 1  

A system of variables was established to determine the probabilities that certain events 

occur and are defined in Table 26.  
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(1, 0.15%) 

PDO 

(1, 0.15%) 
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Table 26. Descriptions of Variables Used in Analysis 

Variable Name Variable Description 

FI Fatal Injury 

I Non-Fatal Injury 

PDO Property-Damage Only Crash 

HH Vehicle Hit Hazard 

NHH Vehicle did Not Hit Hazard 

FIGC Fatal Injury Guardrail Crash 

IGC Injury Guardrail Crash 

PDOGC Property-Damage Only Guardrail Crash 

 

The probability that a guardrail crash results in a fatality may be calculated using 

Equation 2.  
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 (      )  (     )

 (  )  (     )
 

     

       
         Equation 2 

The probability of injury given a guardrail crash has occurred is shown in Equation 3.  
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      Equation 3 

The probability of PDO given a guardrail crash has occurred is shown in Equation 4.  

  (     )  
 (      )
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 (        )  (     )
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         Equation 4 

The probability of fatality given vehicle has run behind the guardrail is shown in 

Equation 5.  

  (    )  
 (     )

 (   )
 

 (     )  (     )

 (   )  (     )
 

     

      
   Equation 5 

The probability of injury given vehicle has run behind the guardrail is shown in Equation 

6. 

  (    )  
 (     )

 (    )
 

 (     )  (     )

 (   )  (     )
 

     

      
         Equation 6 

The probability of PDO given vehicle has run behind the guardrail is shown in Equation 

7. 
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         Equation 7 
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The probability of hitting the hazard given a vehicle has run behind the guardrail is 

shown in Equation 8. 

  (     )  
 (      )

 (   )
 

 (      )  (     )

 (   )  (     )
 

     

      
         Equation 8 

The probability of not hitting the hazard given a vehicle has run behind the guardrail is 

shown in Equation 9. 
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         Equation 9 

The probability of fatality given a vehicle has hit the hazard is shown in Equation 10. 
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The probability of injury given a vehicle has hit the hazard is shown in Equation 11. 
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The probability of PDO given a vehicle has hit the hazard is shown in Equation 12. 
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The probability of fatality given a vehicle did not hit the hazard is shown in Equation 13. 
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     Equation 13 

The probability of injury given a vehicle did not hit the hazard is shown in Equation 14. 
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         Equation 14 

The probability of PDO given a vehicle did not hit the hazard is shown in Equation 15. 

  (      )  
 (       )

 (   )
 

 (       )  (     )

 (   )  (     )
 

     

      
          Equation 15 

The probability of injury was almost the same whether the vehicle struck guardrail or ran 

behind guardrail, as shown in Table 27. As the vehicle traversed behind guardrail, however, the 

probability of injury was much higher given the vehicle hit the hazard, as compared to the 
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probability of injury given the vehicle did not hit the hazard. However, these two probabilities 

were calculated based on a very small sample size.   

Table 27. Probability Distribution of Crash Outcome and Severity 

Crash Outcome 
Crash Severity 

Fatal Injury PDO 

Guardrail Struck 0.0078 0.35 0.6422 

Ran Behind 

Guardrail 
0.0 0.36 0.64 

Vehicle Hit Hazard 0.0 0.50 0.50 

Vehicle Did Not 

Hit Hazard 
0.0 0.33 0.67 

 

4.4 Guardrail and Hazard Crash Rates 

The previous section presented the number of crashes and associated probabilities based 

on type of crash and injury outcome. However, this analysis only considered crash reports, which 

have been shown to underestimate the actual number of impacts with a guardrail system [11]. 

The actual number of crashes shown in Figure 22 could be significantly higher than what was 

reported. Likewise, since it is believed that most unreported crashes occur with low injury 

severities, the estimates for fatal crash probabilities may be lower than those shown in Table 27.  

In order to take exposure into account, guardrail and hazard crash rates were assessed 

using highway mileage as well as average annual daily traffic (ADT) as exposure terms. 

Highway mileage provided by staff from the Kansas DOT is shown in Table 16. ADT data was 

collected from all highway sites containing a guardrail, and was matched up with each guardrail 

system using guardrails site data from all interstate highways in the state of Kansas. Crash rates 

were then calculated based on the number of crashes per mile as well as the total number of 

vehicles passing by a guardrail installation. 

Guardrails were identified at 2,120 sites, and the total number of guardrails located on the 

left and right sides of the road at these sites totaled 2,850. The distribution of the number of 
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guardrail structures by road is shown in Table 28. The “Reference Point” column refers to the 

road that crossed the interstate at that particular site. Road I-70 had the highest number of 

guardrails while I-635 had the fewest. Roads with higher mileage available in the database also 

had more guardrails. As shown in Table 28, a large portion of these roads with higher mileage 

were located in rural areas. In contrast, urban areas were associated with higher crash rates, 

likely because hazard frequency increased near urban areas. Crash rates were calculated using 

the equation shown in Equation 16. The average number of crashes for each roadway segment, 

the number of guardrails per mile of roadway considered, and the associated crash rates are 

shown in Table 29.  

 Crash Rate = (# Crashes) / (Exposure)  Equation 16 

Table 28. Area Type, Mileage, and Guardrail Distribution by Road 
Road Area Mileage # Guardrails % 

I-635 Urban 17.81 39 1.4 

I-470 Urban 27.44 89 3.1 

I-435 Urban 56.07 128 4.5 

I-235 Urban 33.03 130 4.6 

I-335 Rural 100.35 186 6.5 

I-135 Rural 191.48 384 13.5 

I-35 Rural 470.81 703 24.7 

I-70 Rural 847.54 1,191 41.8 

Table 29. Number of Crashes and Guardrails per Mile of Road and Guardrail Crash Rates per 

Road 

Road Area # Guardrails/Mile # Crashes/Mile 

# Crash Rate (in # 

Crashes per Thousand 

Mile-Guardrail) 

I-70 Rural 1.40 0.27 0.22 

I-35 Rural 1.49 0.31 0.44 

I-335 Rural 1.85 0.20 1.07 

I-135 Rural 2.00 0.55 1.43 

I-470 Urban 3.24 0.47 5.32 

I-435 Urban 2.28 0.96 7.52 

I-235 Urban 3.93 1.81 13.97 

I-635 Urban 2.19 1.57 40.31 

 

For example, when applied to I-70, the crash rate was calculated as shown in Equation 

17. 
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                         Crash Rate = 1000 x (227) / (847.54 x 1,191) =                   Equation 17 

= 0.22 crashes per thousand mile-guardrail                          

Interstates I-70 and I-35 had the lowest number of guardrails per mile of roadway  

(i.e., 1.40 and 1.49) while I-470 and I-235 had the highest number of guardrails per mile  

(i.e., 3.24 and 3.93). Interstates I-335 and I-70 had the lowest number of crashes per mile (i.e., 

0.20 and 0.27) while I-635 and I-235 had the highest number of crashes per mile (i.e., 1.57 and 

1.81). Crash rates per thousand mile-guardrail varied widely. Interstates I-70 and I-35 had the 

lowest guardrail crash rates (i.e., 0.22 and 0.44) while I-235 and I-635 had very high guardrail 

crash rates (i.e., 13.97 and 40.31). These numbers indicate that highways located on more 

urbanized areas tend to have more guardrails and higher guardrail crash rates, in terms of crashes 

per thousand mile-guardrail. 

Crash rates were also calculated using traffic volume and guardrail structure as exposure 

instead of mileage and guardrail structure, as shown in Table 30. In this case, crash rate was 

given in number of crashes per trillion vehicle-guardrail per day. Exposure was included in this 

analysis by summing the total traffic passing by a guardrail installation between 2002 and 2006, 

based on ADT data provided by Kansas DOT, corresponding to the time span of the available 

crash data. The ADT at a particular guardrail location was defined as the number of daily 

opportunities for a crash to have happened. The total daily number of opportunities for all 

guardrails on each specific road had to be summed up in order to calculate the number of daily 

opportunities.  
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Table 30. Guardrail Crash Rates, Ran-Behind-Guardrail Crash Rates, and Hazard Crash Rates 

Road Name I-70 I-35 I-435 I-135 I-235 I-470 I-635 I-335 All 

# 

Opportunities/

Day 

36,020,025 
32,134,3

65 

16,154,1

20 

14,919,4

40 

9,986,8

50 

5,696,0

90 

5,619,0

50 

3,115,4

75 

123,645,4

15 

# Guardrail 

Crashes 
219 145 54 103 59 13 28 19 640 

# Ran Behind 

Barrier 
8 2 0 2 1 0 0 1 14 

# Hazard 

Crashes 
2 0 0 1 0 0 0 0 3 

# Guardrails 1191 703 128 384 130 89 39 186 2,850 

Guardrail 

Crash Rate 
2.80 3.52 14.31 9.85 24.90 14.05 70.01 17.97 0.99 

Ran Behind 

Barrier Rate 
0.102 0.049 0.000 0.191 0.422 0.000 0.000 0.946 0.017 

Hazard Crash 

Rate 
0.026 0.000 0.000 0.096 0.000 0.000 0.000 0.000 0.0047 

 

Since the ADT data corresponds to the annual average daily traffic, the ADT average for 

each year of the study was multiplied by 365 days, and the yearly data was summed to estimate 

the total number of vehicles that had passed by a particular guardrail installation during the entire 

period between 2002 and 2006.  

The total guardrail crash rate was calculated using Equation 18. The total crash rate for 

crashes that involved a vehicle traveling behind a guardrail and the total hazard crash rate were 

calculated using Equations 19 and 20, respectively.  

 Guardrail Crash Rate = 
(                       )

(                             )
  Equation 18 

= 0.99 Crash per Trillion Vehicle-Guardrail  

 Run-Behind-Guardrail Crash Rate = 
(                      )

(                             )
  Equation 19 

=  0.017 Crash per Trillion Vehicle-Guardrail  

 Hazard Crash Rate = 
(                     )

(                             )
  Equation 20 

= 0.0031 Crash per Trillion Vehicle-Guardrail 
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Calculated guardrail and hazard crash rates were divergent. Guardrail crash rates were 

319 times higher than hazard crash rates, equal to 0.99 crash per trillion vehicle-guardrail vs. 

0.0031 crashes into shielded hazards per million vehicle-guardrail. Recall that injury percentages 

for vehicles impacting guardrail compared to shielded hazards behind guardrail were similar. 

Based on current guardrail lengths, the disproportionate rate of guardrail crashes compared to 

shielded hazard crashes likely corresponds to a significant number of nuisance crashes that could 

contribute to either injury or fatality. As a result, guardrail lengths may be excessively long, 

which could increase the frequency of crashes, including severe crashes, occurring at each 

location. 

In addition to crashes per trillion vehicle-guardrails, crash rates were calculated in terms 

of number of crashes per billion vehicle-miles for each road, as shown in Table 31, and per 

hazard, as shown in Figures 23 and 24. Crashes occurred at a rate 40 times higher on interstate I-

635, with the highest crash rate, than interstate I-70, which had the lowest crash rate. The rate of 

bridge rail and slope hazard crashes was greater on every urban interstate than on any rural 

interstate in the database. Discrete hazards with narrow hazard offsets, such as bridge piers and 

poles or signs, were much more commonly represented on urban highways than rural highways. 

In contrast, long hazards such as slopes, culverts, and hazards protected by bridge rails were 

more commonly protected for rural roadways. 
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Table 31. Crash Rates per Road in Number of Crashes per Billion Vehicle-Miles 

Road Area Mileage 

# Crashes 

per 5 

Years 

Opportunities / Day 

Crash Rate 

(Crashes / 

BVMT-day) 

I-70 Rural 847.54 227 36,020,025 0.004 

I-35 Rural 470.81 147 32,134,365 0.005 

I-135 Rural 191.48 105 14,919,440 0.020 

I-335 Rural 100.35 20 3,115,475 0.035 

All Rural 1610.18 499 86,189,305 0.008* 

I-435 Urban 56.07 54 16,154,120 0.033 

I-470 Urban 27.44 13 5,696,090 0.046 

I-235 Urban 33.03 60 9,986,850 0.100 

I-635 Urban 17.81 28 5,619,050 0.153 

All Urban 134.35 155 37,456,110 0.071* 

*Aggregate rural and urban crash rates were weighted numbers. Crash rates were calculated by multiplying the crash 

rate and opportunities per day of each roadway, dividing by the total opportunities per day for either rural or urban 

roads, respectively, then summing each roadway’s weighted contribution to the total crash rate. 

 

 
Figure 23. Urban Road Crash Rates per Shielded Hazard and Billion Vehicle-Miles 
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Figure 24. Rural Road Crash Rates per Shielded Hazard and Billion Vehicle-Miles  

Although efforts were made to account for exposure in guardrail crash risk analysis, 

Kansas roadways may not be representative of freeways in all states. It may be appropriate to 

modify the exposure-controlled crash rates to account for variations in different states. 

4.5 Risk of Collisions 

For purposes of analysis, risk was defined as the potential effect of an event considering 

its probability and consequences. The analysis can determine risk (R) associated with event (E), 

which has probability (P) to occur and expected consequence (C), which is calculated using 

Equation 21. 

 R = P x C Equation 21 

The probability (P) may be estimated from failure rates whenever sufficient data is 

available. The risk (R) referred to the potential monetary loss associated with either a guardrail 

or a shielded hazard crash. Two major analyses were implemented: probability and consequence 
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striking a guardrail, traveling behind a guardrail, and impacting a shielded hazard after traveling 

behind a guardrail. In order to calculate the risk of a vehicle traveling behind a guardrail, three 

terms had to be defined and calculated. 

1) P(TG) = Probability a vehicle has left the road and is traveling towards a guardrail; 

2) P(BG/TG) = Probability vehicle traveled behind guardrail given it is traveling 

towards a guardrail; and 

3) R(BG) = Risk a vehicle traveling behind a guardrail. 

These quantities were calculated using Equations 22 through 24. 

 P(TG) = 
         

               
= 

   

(                     )
            Equation 22 

 P(BG/TG) =  
                                    

         
 

  

   
         Equation 23 

 R(BG) =P(TG) x P(BG/TG) =                                 Equation 24 

In order to calculate the risk of a vehicle hitting a shielded hazard, P(BG/TG) and R(BG) 

were modified to P(HH/TG) and R(HH). These two terms are defined as follows: 

4) P(HH/TG) = Probability a hazard is impacted given vehicle left the road given it is 

traveling towards a guardrail;  and 

5) R(HH) = Risk a vehicle impacting a shielded hazard. 

 P(HH/TG) =  
                     

         
 

 

   
         Equation 25 

 R(HH) =P(HH/TG) x P(TG) =                                 Equation 26 

In order to calculate the risk of a vehicle hitting a guardrail, P(BG/TG) and R(HH) were 

modified to P(HG/TG) and R(HG). These two terms are defined as follows. 

6) P(HG/TG) = Probability a guardrail is impacted given vehicle left the road given it is 

traveling towards a guardrail;  and 

7) R(HG) = Risk a vehicle impacting a guardrail. 

 P(HG/TG) =  
                        

         
 

   

   
         Equation 27 
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 R(HG) = R(HG/TG) x P(TG) =                                 Equation 28 

As can be seen, the risk associated with a vehicle traveling on Kansas interstate highways 

to crash a guardrail, R(HG), is much higher than the risk associated with traveling behind a 

guardrail, R(BH). The risk associated with a vehicle hitting a shielded hazard, R(HH), is lower 

than the risk of traveling behind the guardrail. These imply that the risks associated with a 

vehicle to travel behind a guardrail and, subsequently, hit the shielded hazard is very low. This 

reinforces the findings presented from calculated crash rates. Equivalently, the probability of a 

vehicle impacting a hazard which is shielded by a guardrail that was designed based on the 2006 

RDG runout lengths is extremely low.  

It is important to stress that the risks calculated above were assumed to be the same for 

all vehicles, and applies specifically to Kansas roadways. This implies that factors such as 

different driving behavior or vehicle type were not taken in consideration. However, this 

methodology can be repeated for a specific highway or data that only include, for example, a 

certain group of vehicles or drivers, or a different location.  

A consequence analysis to evaluate the monetary loss equivalent due to safety hazards 

was also conducted. The crash severity distributions for both guardrail and non-guardrail crashes 

was utilized and which are shown in Tables 32 through 33. Costs for injuries shown in Table 34 

are obtained from the Statistical Cost of a Life concept, and were obtained from FHWA for year 

2012 [23]. 

Table 32. Crash Severity Distribution for Guardrail Crashes 

 

Year 2002 Year 2003 Year 2004 Year 2005 Year 2006 Total 

SEVERITY # % # % # % # % # % # % 

Fatal 1 0.78 1 0.76 3 1.82 0 0 0 0 5 0.78 

Incapacitating 7 5.47 7 5.30 7 4.24 2 2.04 5 4.24 28 4.38 

Non-incapacitating 20 15.63 26 19.70 31 18.79 16 16.33 31 26.27 124 19.38 

Possible 15 11.72 20 15.15 16 9.70 8 8.16 13 11.02 72 11.25 

PDO 85 66.41 78 59.09 108 65.45 72 73.47 69 58.47 412 64.38 
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Table 33. Crash Severity Distribution for Non-Guardrail Crashes 

 
Year 2002 Year 2003 Year 2004 Year 2005 Year 2006 Total 

SEVERITY # % # % # % # % # % # % 

Fatal 0 0 0 0 0 0 0 0 0 0 0 0 

Incapacitating 1 33.33 1 12.50 0 0 0 0 0 0 2 14.29 

Non-incapacitating 1 33.33 1 12.50 0 0 0 0 0 0 2 14.29 

Possible 0 0 1 12.50 0 0 0 0 0 0 1 7.14 

PDO 1 33.33 5 62.50 2 100 0 0 1 100 9 64.29 

Table 34. 2012 Crash Costs [23] 
CRASH SEVERITY US$ 

Fatal 6,749,184 

Incapacitating 467,251 

Non-Incapacitating 93,450 

Possible 49,321 

PDO 5,192 

 

Guardrail and non-guardrail crash injury distributions were not significantly different. 

However, guardrail collisions resulted in five fatal crashes which resulted in seven fatalities. 

Therefore, the expected crash cost for each guardrail and non-guardrail crashes can be calculated 

using the following equations:  

Crash Cost (Guardrail Crash) = 0.0078 x (Fatal Crash Cost) +  

+ 0.0438 x (Incapacitating Crash Cost) + 0.1938 x (Non-Incapacitating Crash Cost) +  

+ 0.1125 x (Possible Injury Crash Cost) + 0.6438 x (PDO Crash Cost) Equation 29 

Crash Cost (Non-Guardrail Crash) = 0.3571 x (Injury Crash Cost) +  

+ 0.6429 x (PDO Crash) Equation 30 

The costs shown in Table 34 were used in combination with Equations 29 and 30, and the 

average guardrail crash cost was estimated to be $100,111.05, while the estimated non-guardrail 

crash cost was estimated to be $86,983.63. The associated risk of each crash outcome was 

estimated using Equation 21, using these dollar amounts as costs (C) in Equation 21 and the 

crash probabilities (P) calculated using Equations 24 and 28. Therefore, the risk associated with a 

guardrail crash was estimated to be $0.0002, while the risk associated with a non-guardrail crash 
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was estimated to be $0.000005, which is 40 times less expensive. The risk associated with 

guardrail crashes is much higher than the risk associated with a vehicle traveling behind a 

guardrail. 

4.6 Summary 

A total of 654 real-world vehicle crashes which occurred on urban and rural Kansas 

interstate highways from years 2002 to 2006 were analyzed. Almost three-fourths (i.e., 479 

crashes) of all these crashes occurred on interstates I-70, I-35, and I-135. Interstate I-70 was 

predominantly rural, was the longest facility with 847 miles (1,363 km) of roadway, with the 

largest number of guardrails installed (i.e., 1,191) and the highest number of crashes, 227 (i.e., 

34 percent).  

Approximately 64 percent of the crashes resulted in no injury, 35 percent resulted in 

possible, non-incapacitating, or disabling injury crashes, and less than 1 percent resulted in fatal 

injury crashes. The fewest number of injury crashes were recorded on interstate I-35 with 27 

percent of crashes involving at least one injury, while interstate I-635 had the highest injury 

percentage with 57 percent of crashes resulting in injury.  

Roadways with the longest and shortest guardrail lengths were interstates I-70 and I-635, 

respectively. Bridge rails, slopes, culverts, and embankments were correlated with the longest 

guardrail lengths, and the shortest lengths were observed with discrete hazards such as poles and 

signs. The widest and narrowest guardrail lateral offsets were observed on Interstates I-435 and 

I-470, respectively, whereas the narrowest hazard lateral offsets were observed on Interstate I-

135. Hazard lateral offsets were narrowest when guardrails shielded bridge piers.  

Guardrail crashes at roadside culverts had the lowest overall severity. No fatalities were 

recorded and less than 30 percent of the crashes resulting in injury. It was also determined that of 

the crashes in which an errant vehicle impacted a guardrail, approximately 60 percent impacted 
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the first upstream quarter of the guardrail installation. Thus, upstream end anchorages and 

terminals must be adequately designed to develop the full capacity. 

Statistical models suggested that crash severity tended to be lower as guardrail and 

hazard lateral offsets increased. However, these findings were not statistically significant at a 

confidence level lower than 23 percent. These findings may indicate the importance of wider 

clear roadside areas which could be used by errant drivers to take corrective maneuvers, such as 

breaking and steering, to minimize crash consequences.  

Cumulative probability distributions indicated that left-side guardrails were located 

farther from the travel way edge, and right-side guardrails were longer. Hazard lateral offsets 

tended to be wider on the right side than on the left side of the roadway. Approximately 70 

percent of all median hazards were located less than or equal to 30 feet (9.1 m) from the traveled 

way on which the crash occurred. 

Only 2 percent, or 14 crashes, involved a vehicle departing the road and traversing behind 

the guardrail. Most of run-off-the-road crashes involving a vehicle running behind a guardrail 

occurred on Interstate I-70, for a total of 8 crashes or 3.52 percent of all I-70 crashes. Five injury 

crashes and no fatalities related to traversing behind the guardrail were recorded. Less than 1 

percent, or 2 crashes, impacted the shielded hazard. One of these crashes resulted in an injury. 

The probability analyses revealed that based on the sampled guardrail crash data, the 

probability of a crash resulting in no injury is the same for guardrail and non-guardrail crashes. 

The probability of an injury for guardrail and non-guardrail crashes is also similar. Although the 

likelihood of a fatality to occur given a guardrail crash has happened was found to be almost 1 

percent, and no fatalities occurred in non-guardrail crash events. This analysis was based on a 

very small number of vehicles running behind a guardrail. Therefore, results are considered 

inconclusive.  
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Crash rates showed that guardrail, run-behind-guardrail, and hazard crash rates were 

0.99, 0.017, and 0.0047 crashes per trillion vehicle-guardrail. This indicates that the guardrail 

crash rates are 58 times higher than run-behind-guardrail crash rates and 210 times higher than 

hazard crash rates. The risk of a hazard collision was also estimated. A Risk Analysis indicated 

that a vehicle traveling on Kansas interstate highways to run off the road and hit a guardrail 

equated to $0.0002, while the cost-based risk of running behind a guardrail was $0.000005.   

The results of the Risk Analysis and statistical descriptions indicate a statistical 

imbalance between optimal and existing guardrail length. Severe and injury crashes may be 

minimized by shortening guardrail lengths to reduce exposure. This could reduce the rate of 

severe and moderate crashes and also reduce installation and repair costs. An analysis was 

conducted to evaluate the optimum length of the guardrail and is shown in Chapter 5. 
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5 RSAP ANALYSIS 

Optimizing guardrail length depends on two factors. First, decreases in guardrail length 

may contribute to more vehicles traversing behind the guardrail and impacting the shielded 

hazard. For roadside safety design, guardrail crashes should be less severe than crashes involving 

the shielded hazard or the guardrail may not be cost-beneficial. Therefore, an increase in impact 

frequency between the vehicle and hazard may increase the rate of severe and non-severe injury 

crashes, compared to PDO crashes. Alternatively, the increase in crash severity of more vehicles 

impacting the shielded hazard may be offset by the larger reduction in crashes involving the 

guardrail system, which is itself a roadside hazard which may be involved in severe crashes. If 

the benefit associated with reducing the guardrail length is greater than the cost, then a shorter 

guardrail length may be warranted. It should also be noted that savings in direct and indirect 

costs with shorter guardrail lengths could be used to make further safety improvements for other 

features, which could amplify the benefit-to-cost ratio of the same total amount of safety 

improvement funds. 

Unfortunately, it is impractical to conduct controlled experiments where the analyst 

would have control over all roadside, roadway, and traffic characteristics to optimize guardrail 

length. Researchers relied on the Roadside Safety Analysis Program (RSAP), a roadside safety 

cost-benefit estimation tool which has received widespread acceptance [24]. The program 

utilizes real-world crash trajectories, severities, and departure statistics to estimate probabilities 

of crashes and their associated costs while controlling factors which could not normally be 

controlled in real-world applications. The current version of RSAP (RSAPv3) was used in this 

study. A brief summary of features is provided in the following sections. For more details about 

RSAPv3, readers are referred to Roadside Safety Analysis Program Update [25]. 
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5.1 Overview of RSAP 

The first version of RSAP was released in 2003 as a cost-effectiveness procedure 

developed by Mak and Sicking [24]. Details of the program were described in NCHRP Report 

492. The program utilized severity indices which had linear correlations with vehicle impact 

energies and used distributions of roadside departure trajectories and speeds, vehicle fleet 

descriptions, and roadway functional class relationships to run-off-road crash rates to estimate 

benefits and costs of safety improvements on roadways. The program allowed user controls over 

functional class, speed limit, hazard offset, shielding options, and could incorporate a broad 

spectrum of hazard types and shielding options to suit the user’s needs. Despite the significant 

benefit of this tool, the program required constant tuning to match real-world data, which was 

sometimes not available for particular research efforts.  

In 2012, RSAPv3 was released. The purpose of this newer version was to overcome some 

of the limitations that the previous version had, in particular by updating the representation of 

trajectories using real-world data. The RSAPv3 program bases its analyses on four modules (i.e., 

Encroachment Probability Module, Crash Prediction Module, Severity Prediction Module, and 

Benefit/Cost Module), similar to the original version. Each of the modules was modified to 

improve accuracy and reliability.  

5.1.1 Encroachment Probability Module 

The encroachment probability module calculates the encroachment rate on a specified 

road segment. Traditionally, encroachment probabilities have been based on data obtained by 

Cooper [18]. However, the Cooper data has been criticized for underrepresenting narrow-

distance departures, such as roadway departures in which the vehicle does not exit the shoulder 

and may return to the travel lane. RSAPv3 also uses the Cooper encroachment data, but the data 

was re-analyzed to attempt to resolve some of these issues. The re-analyzed data was then used 
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as the default encroachment rate in RSAPv3. This re-analyzed Cooper data was called the 

Miaou-Cooper data.  

The results from the re-analysis produced baseline encroachment frequencies for three 

highway types: four-lane and multi-lane divided highways and two-lane undivided highways. 

The baseline conditions for the encroachment frequencies are: posted speed limit of 65 mph 

(104.6 km/h), flat ground, relatively straight segment, lane width greater or equal to 12 feet, and 

zero major access points per mile. Whenever road conditions deviate from these conditions, 

adjustment factors can be used to calibrate the encroachment rate to the specific road 

characteristics.   

For the prediction model of run-off-road trajectories, the Miaou-Cooper data was 

compared to the data utilized in earlier versions of RSAP. The historical data did not differentiate 

between roadways with different speed limits, access densities, terrain types or posted speeds. As 

a result, the calculated distribution of crashes from the module were treated compositely. The 

Miaou-Cooper data normalized the data based on roadway and utilized different encroachment 

models for each scenario.    

5.1.2 Crash Prediction Module 

The crash prediction module calculates the probability of a fixed-object collision or 

rollover once a vehicle has left the traveled way by performing a series of analyses. Initially, 

trajectories collected under a crash reconstruction project described in NCHRP Project 17-22 

[26] are projected from the roadway throughout the designated roadway segment. A database of 

impact angles and speeds associated with these trajectories are consulted in the analysis.  

After selecting and mapping trajectories and determining their potential impact 

conditions, RSAPv3 then determines whether these trajectories will intersect any roadside or 

median hazard. Hazards are classified as: point hazards (e.g., trees, signs, and utility poles); line 
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hazards (e.g. longitudinal barriers); or area hazards (e.g. slopes and ditches). The modeled 

vehicle interaction with the feature is then extrapolated from the impact conditions and type of 

object impacted or traversed. For example, RSAPv3 will predict a higher rollover propensity 

whenever steeper roadsides are defined, as well as whenever a vehicle trajectory will intersect a 

line or point hazard that tends to cause vehicle instability.  

Once a collision is detected, RSAPv3 will calculate the probability of a rollover occurring 

before hazard collision, probability of hazard penetration, and probability of redirection. Hazard 

penetration means that the vehicle traverses to the back side of the obstacle. This may occur due 

to structural failure of the hazard, underride, vaulting, or rolling over the top of the hazard. 

RSAPv3 only considers vehicle redirection for impacts with longitudinal barriers.  

Once a vehicle has been redirected or penetrated through a hazard, RSAPv3 will define 

the vehicle’s trajectory after the first event and determine whether the vehicle will encounter any 

other hazard, resulting in additional collisions. Alternatively, RSAPv3 may also predict no crash 

or rollover whatsoever. This happens when the selected and mapped vehicle trajectories do not 

intersect any hazard. In these cases, encroaching vehicles will simply come to a safe stop on the 

roadside. 

5.1.3 Severity Prediction Module 

The severity prediction module estimates the severity of a crash once the probabilities of 

an encroachment and crash have been estimated. In the previous version of RSAP, the Severity 

Index (SI) estimate for crash severity was linearly correlated with impact speed. However, the 

slope values for these curves were based on engineering judgment instead of crash data. This 

procedure was updated in RSAPv3 using dimensionless, adjustable severity indices which could 

be based on impact speed. In addition, severity index data was based on the results of an analysis 

of real-world crashes and also accounted for unreported crash estimates. 
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5.1.4 Benefit/Cost Module 

The Benefit/Cost (B/C) module conducts the benefit-cost analyses needed to determine 

the most cost-effective alternative. For roadside safety analyses, the “costs” are calculated as the 

sum of installation, maintenance, and repair costs. Repair costs may be a function of crash 

severity and rate and are calculated based on findings from the previous modules. Other costs, 

including purchasing right-of-way, environmental costs, and other indirect costs can be included 

in the analysis, but calculation of these costs is more rigorous and is not completed automatically 

by the program. 

The benefits are calculated in terms of reduction in crash costs or crash severity. 

Historically, methods for calculating the benefit have relied on either the AASHTO “Red Book” 

[27], which purportedly reflects only costs that directly impact the user, or FHWA 

Comprehensive costs, which are based on the willingness-to-pay concept. Both of these 

approaches lead to different results and may alter the expected cost-effectiveness of a solution. 

To accommodate these concerns, RSAPv3 utilized the FHWA Comprehensive Costs from the 

current year as a baseline but allowed the calculation of alternative costs if the user desires [25]. 

These costs may be updated based on more recent information. Although baseline costs were not 

used in this study, they are shown in Table 35 for comparison. The FHWA Comprehensive Costs 

from 2012 used in this study were previously shown in Table 34. 

Table 35. 2009 FHWA Comprehensive Crash Costs 

Crash Severity Crash Cost 

Fatal $6,000,000 

Serious Injury $415,385 

Moderate Injury $83,077 

Possible/Minor Injury $43,486 

PDO $4,615 
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The calculated benefits and costs are then utilized to determine the cost-effectiveness of 

using one roadside safety treatment in comparison with another, as shown in Equation 31. If the 

ratio is greater than 1, the reduction in crash costs (benefit) is larger than the cost to install the 

system. However, transportation agencies usually have adopted a minimum B/C ratio of 2, and 

prefer a ratio greater than 4, when investigating the economic feasibility of a highway safety 

improvement alternative. 

        
       

       
  Equation 31 

Where: 

        Benefit-to-Cost ratio of alternative 2 with respect to alternative 1 

     Crash costs associated with alternative 1; 

     Crash costs associated with alternative 2; 

     Direct costs associated with alternative 1; and 

     Direct costs associated with alternative 2. 

 

5.2 Benefit-to-Cost Modeling and Analysis Methods 

5.2.1 Road Segment Modeling 

This research project sought to identify the optimal guardrail length based on benefit-to-

cost analysis derived from freeway crash data, and to evaluate which guardrail length provides 

the optimum safety improvement for the cost incurred. The baseline guardrail lengths were 

calculated using the runout length, LR, recommended by AASHTO in the 2006 and 2011 RDGs 

[2,3]. Other variations were also considered. Roadway geometries and real-world run-off-road 

crash trajectories were modeled in RSAPv3 to reproduce traffic conditions at guardrail crash 

sites using data obtained from Kansas DOT.  

Much of the obtained data included rural 4-lane interstate highways divided by a grass 

median with rumble strips at the shoulders. Many medians were at least 60 feet (18.2 m) wide 

with shallow cross-slopes. The typical lane width was 12 feet (3.6 m), while the typical right and 
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left shoulder widths were 12 and 8 feet (3.6 and 2.4 m), respectively. Traffic growth factor was 

assumed to be 1 percent. Therefore, all these parameter values were specified in every highway 

scenario modeled in RSAPv3. 

As discussed in Chapter 4, the most commonly shielded hazards were features spanned 

by bridges as well as bridge piers. Due to the diverse array of possible hazards shielded by bridge 

rails, for analysis purposes, all hazards protected by bridge rails were grouped under the category 

“Bridge Rail”. Approach slope length, steepness, width, and height varied widely between bridge 

locations. Therefore, modeling bridge rail scenarios could be too extensive and beyond the scope 

of this study. In contrast, visual estimates from applications such as Google StreetView indicated 

roadside terrains were mostly flat whenever a bridge pier was present. However, researchers did 

not have exact slope measurements. As a result, left-side (or median) slopes were assumed to be 

10:1, and right-side slopes were assumed to be flat. Note that 10:1 slopes are the shallowest non-

flat slope features available to be modeled in RSAPv3. A typical highway cross-section of a 

crash site containing bridge piers which are being shielded by guardrails on the left and right 

sides is shown in Figure 25.  

Several variables were investigated in this modeling effort and included: average annual 

daily traffic (ADT); hazard lateral offset; guardrail length; and guardrail lateral offset. The values 

chosen for guardrail and hazard lateral offsets were based on the values contained in the Kansas 

crash dataset used in the data analysis described in Chapter 4. The guardrail and hazard lateral 

offset distribution from the dataset are shown in Table 36.  
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Figure 25. Highway Cross-Section View 
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Table 36. Parameter Values Used 
 

Lateral Offset (ft) 
Guardrail  Bridge Pier 

 # % # % 

Right 

Side 

Up to 11.99 23 23 30 30 

12 - 15.99 23 23 52 52 

16 - 19.99 19 19 8 8 

20 - 23.99 29 29 4 4 

24 – 30 4 6 5 5 

> 30 2 2 1 1 

Left  

Side 

Up to 11.99 3 5.26 1 1.75 

12 - 15.99 4 7.02 3 5.26 

16 - 19.99 7 12.28 0 0.00 

20 - 23.99 18 31.58 4 7.02 

24 – 30 19 33.53 33 57.89 

> 30 6 10.53 16 28.07 

 

Many bridge piers and guardrail installations were within 30 feet (9.1 m) from the 

traveled way edge. Recall guardrail lateral offset was measured from the traveled way edge to 

the front face of the rail at the upstream end of the system. Thus, guardrail flares, which were 

common, also had higher recorded lateral offsets than some bridge pier hazards. Flares were 

included in the lateral offset analysis because over 60 percent of guardrail crashes occur in the 

first upstream quarter of the guardrail, as shown in Table 22, and flared guardrail can capture 

more low-angle impacts. As shown in Figure 26, the last three quarters (i.e., second, third, and 

fourth quarters) of the roadside guardrail may be exposed to a smaller number of encroachments 

as compared to the first quarter, which also included terminal impacts. The rate and severity of 

terminal impacts was assumed to be constant, independent of guardrail length. The guardrail and 

bridge pier lateral offset values adopted in the RSAPv3 analysis are shown in Table 37.  

Guardrail runout lengths are used to determine the minimum length of guardrail upstream 

of the hazard, and are is configured to prevent a vehicle from encroaching on the roadside and 

impacting the farthest lateral extent of the hazard within the clear zone, as shown in Figure 1.The 

minimum guardrail length upstream of a hazard is often defined as the longitudinal length-of-

need (LON). For this study, guardrail LON values were calculated using guardrail runout lengths 
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recommended by the 2006 and 2011 AASHTO RDG. In addition, LONs were also calculated 

based on 90, 70, and 40 percent for values in the 2006 and 2011 RDGs. The 2006 and 2011 RDG 

runout lengths were shown in Tables 12 and 14, respectively.  

 
Figure 26. Guardrail Exposure per Guardrail Quarter 
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Table 37. Parameter Values Used in Median Bridge Pier Analysis 

Right Side 

ADT (veh./day) 6,000, 12,000, 30,000 

Guardrail Lateral Offset, ft (m) 6 (1.8), 12 (3.6), 16 (4.9), 20 (6.1), 24 (7.3) 

Bridge Pier Lateral Offset, ft (m) 12 (3.6), 18 (5.5), 26 (7.9), 32 (9.8) 

Guardrail Length, LR 2006 and 2011 RDG, 90%, 70%, 40% 

Left Side 

ADT (veh./day) 6,000, 12,000, 30,000 

Guardrail Lateral Offset, ft (m) 8 (2.4), 12 (3.6), 18 (5.5), 24 (7.3) 

Bridge Pier Lateral Offset, ft (m) 12 (3.6), 18 (5.5), 24 (7.3), 28 (8.5) 

Guardrail Length 2006 and 2011 RDG, 90%, 70%, 40% 

 

The runout lengths vary according to the traffic volume and design speed of the road 

segment, as shown previously in Tables 12 and 14. Most of the crashes used in this study 

occurred on road segments which had posted speed limits of 65 or 70 mph (104.6 or 112.6 km/h) 

as most of the data correlated with rural interstates. Crashes sometimes occurred on urban 

interstates with posted speed limits of 55 or 60 mph (88.5 or 96.5 km/h). Highway scenarios 

were modeled with 60 and 70 mph (96.5 and 112.6 km/h) speed limits to reduce computational 

time, because cost-effectiveness analysis using RSAPv3 can be very time consuming.  

In order to select traffic volume values to be used in the RSAPv3 analyses, traffic 

volumes from the crash sites were evaluated. The traffic volume distribution for all 654 crash 

sites used in the study is shown in Figure 27. Approximately 80 percent of crashes occurred on 

roadways with ADTs less than or equal to 30,000, which were predominantly rural roadways. 

Three traffic volumess were used in the RSAPv3 analysis: 25
th

; 50
th

; and 85
th

 percentile ADTs, 

which corresponded to ADTs of approximately 6,000, 12,000, and 30,000, respectively.   

Lastly, all road segments were modeled as being 1,000 feet (304.8 m) long, and the 

bridge pier center was located 998 ft (304.2 m) from the beginning of the segment. A typical 

highway segment of a crash site containing bridge piers shielded by guardrails on both median 

and roadside is shown in Figure 28.  
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Figure 27. ADT Distribution from Crash Sites 

 
Figure 28. 1,000-ft (304.8-m) Highway Segment Plan View 
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5.2.2 Safety Alternatives 

For RSAPv3 analyses performed in this study, the baseline condition corresponded to a 

no-guardrail option (i.e., Do Nothing). Four safety treatment alternatives included guardrail 

install with lengths corresponding to 40, 70, 90, and 100 percent of the values calculated using 

the 2006 and 2011 AAHSTO RDG guardrail LONs, which are defined in Equation 32.  

                                     (  )  (
     
  

  
⁄

) (  ) Equation 32 

where 

LA = lateral distance from travel way to back of hazard 

L2 = lateral distance from edge of travel way to front face of barrier 

LR = runout length; longitudinal distance vehicle would have to travel to impact hazard, 

measured parallel with road (obtained from table in RDG) 

PL = decimal percentage of RDG guardrail length (i.e., 1.00, 0.90, 0.70, or 0.40) 

 

The upstream guardrail LON (“X”) was rounded up to the nearest 10-ft (3.0-m) increment for 

simplicity. In addition, no guardrail was modeled downstream from the hazard. For each 

guardrail length, at least 6 post spans, or 37 ft – 6 in. (11.4 m) of downstream trailing end 

guardrail was assumed, but not modeled, because the contribution from that guardrail length did 

not change for different upstream guardrail LON (“X”) values.  

Many guardrail systems installed near freeways have upstream ends within the clear 

zone, and must be terminated with a crashworthy end terminal. Many guardrail terminals in use 

begin to redirect the vehicle at and downstream from the third post, and are non-redirecting 

upstream from the third post. However, no non-redirecting guardrail option was available in 

RSAPv3, and modeling the terminal as a 12.5-ft (3.8-m) long feature also over-estimated the 

redirective capacity of the system by estimating a significant energy loss associated with oblique 

impacts. It was believed that the most conservative approach to modeling the terminal was to 

approximate the head as a point hazard located at the upstream end of the guardrail LON (“X”). 



August 12, 2014 

MwRSF Report No. TRP-03-284-14 

65 

This method should overestimate an errant vehicle’s likelihood of impacting the shielded hazard 

by ignoring energy losses due to impacts with the non-redirecting portion of the end terminal. 

Direct costs associated with different guardrail lengths were estimated using average 

costs of guardrail bidding, normalized per unit length. Average guardrail installation costs in 

Kansas were $29.06 per ft ($95.34 per m) for the first quarter of 2012, and $30.48 per ft 

($100.00 per m) for the second quarter of 2012. These two estimates were averaged for a 

resultant cost of $29.77 per ft ($97.67 per m), which was used for all safety treatment direct cost 

analyses. In addition, the average bid awarded for end terminal construction was $1,988.16 per 

unit. A 25-year project life was selected, with a discount rate of 4%. 

5.2.3 Example Guardrail Length Calculation 

A scenario involving a 4-ft (1.2-m) diameter bridge pier located 26 ft (7.9 m) away from 

the roadway edge was used to demonstrate the guardrail LON options. The distance to the back 

side of the hazard, LA, was equal to 30 ft (9.1 m). The 2006 and 2011 RDG runout lengths, or LR, 

were approximately 394 and 330 ft (120 and 101 m), respectively, for a roadway with 6,000 

ADT. A guardrail located 12 ft (3.6 m) from the travel way, or 14 ft (4.3 m) in front of the 

hazard, would then have upstream LONs (“X” values) equal to those shown in . 

Table 38. Guardrail Upstream LON (“X”) Options for Example Scenario 

 
 

5.2.4 Lowest Crash Cost Guardrail Length 

The lowest crash cost guardrail system was selected as the length which minimized the 

estimated injury crash costs. No benefit-to-cost analysis was performed with this approach so 

2006 RDG 2011 RDG

RDG Upstream LON 236 ft (72.1 m) 198 ft (60.4 m)

90% Upstream LON 213 ft (64.8 m) 178 ft (54.3 m)

70% Upstream LON 165 ft (50.4 m) 139 ft (42.2 m)

40% Upstream LON 95 ft (28.8 m) 79 ft (24.1 m)
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that the alternative with the largest safety benefit could be identified. Crash costs declined after 

guardrail installation for every guardrail and hazard offset scenario analyzed.   

An example of the analysis used to determine the lowest-crash cost guardrail system is 

shown in Figure 29. The analysis utilized a traffic volume of 30,000 vehicles per day, guardrail 

located 12 ft (3.7 m) from the side of the road, and a speed limit of 60 mph (97 km/h). Hazards 

located far from the roadway edge had crash costs minimized with guardrail lengths much 

smaller than those recommended by the 2011 AASHTO RDG.  

 
Figure 29. Crash Costs, Bridge Pier Shielded with 12 ft (3.7 m) Guardrail Offset 

Guardrail upstream LON (“X”) options were considered in greater detail, as shown in 

Figure 30. Crash costs for all three hazard offsets converged due to the crash cost contribution 

from guardrail impacts at guardrail upstream LONs (“X”) over 140 ft (42.7 m). The lowest-cost 

option for each scenario would be a guardrail 100 percent, 40 percent, and 70 percent of the 2011 

RDG upstream LONs (“X”) for hazards located 18 ft (5.5 m), 26 ft (7.9 m), and 32 ft (9.8 m) 

from the roadway edge, respectively. 
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Figure 30. Crash Costs, Bridge Pier Shielded with 12-ft (3.7 m) Guardrail Offset 

Recall that real-world crash trajectories were used to simulate vehicle trajectories into or 

near hazard locations. Curvilinear or redirecting vehicle trajectories interacted with hazards 

located closer to the roadway, particularly for shorter lengths of guardrail, as shown in Figure 31. 

Only vehicles with larger lateral encroachments interacted with hazards located farther from the 

roadway. These vehicles were also typically associated with larger CG trajectory angles at 

departure from the roadway, which made shorter guardrail lengths more favorable. 
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Figure 31. Trajectories of Vehicles Running Behind a Guardrail 

Direct costs were not analyzed using the lowest-severity crash risk approach. Thus, total 

annualized crash costs were recorded and analyzed, and benefit-to-cost ratios were calculated. 

Results from this study were very similar for lowest crash cost and highest cost-effectiveness 

guardrail lengths, so whenever feasible or reasonable to do so, the lowest crash cost guardrail 

length should be used. 
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5.2.5 Most Cost-Effective Guardrail Length 

Benefit-to-cost analyses were used to determine the most cost-effective guardrail length. 

The cost-effectiveness analysis normalized the approximate monetary benefits, or crash cost 

reductions, of the safety treatments based on annualized installation costs and recurring repair 

costs. Many state DOTs utilize a cost-effectiveness approach to assist with the implementation of 

guardrail systems based on maximizing the safety benefits for the least expenditures due to 

limited available funds. 

The “Do Nothing” scenario was not associated with any direct costs. For the other safety 

treatment options, repair costs per impact were neglected. By ignoring repair costs, direct costs 

would be minimized, which would bias results toward using guardrail with sufficient length to 

minimize ran-behind guardrail crash risk. 

5.2.6 Selection of Optimal Guardrail Length 

After conducting an analysis on hazard treatment alternatives using the 2006 and 2011 

AASHTO RDG upstream LONs (“X”), it was observed that the results of RSAP were singularly 

deterministic, or that one answer was predicted for one prescribed combination of hazard and 

guardrail offsets. Based on this observation, crash costs and direct costs were collected and 

summarized. The combined simulation of guardrail lengths provided a total of 8 unique guardrail 

lengths for any scenario, which is summarized in Table 38. Because guardrail lengths were 

rounded to increments of 10 ft (3.0 m) for analysis purposes, guardrail lengths sometimes 

overlapped, but each distinct increment was segregated by not less than 10 ft (3.0 m) of guardrail 

length. For some simulations, the safest and/or most beneficial guardrail lengths required greater 

discretization, and limited analyses were conducted with guardrail lengths different from the 

standard 40, 70, and 90
th

 percentile numbers for either 2006 or 2011 RDGs. 
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Table 39. Simulated Guardrail Length Categories and Relationship to 2006 and 2011 RDGs 

Categorical 

Description 

Approximate 

Relationship 

to 2006 RDG 

Approximate 

Relationship 

to 2011 RDG 

2006 RDG 100% 120-130% 

90% 2006 RDG 90% 110-120% 

2011 RDG 70-80% 100% 

70% 2006 RDG 70% 80-100% 

90% 2011 RDG 60-70% 90% 

70% 2011 RDG 40-60% 70% 

40% 2006 RDG 40% 50-70% 

40% 2011 RDG 20-30% 40% 

 

5.3 RSAP Results 

Because guardrail systems are assumed to redirect vehicles at the start of the calculated 

LON, new LON recommendations (i.e.,  X
*
s) were tabulated as a percentage of the 2006 and 

2011 AASHTO RDG LONs. Results were tabulated with respect to the distance between the 

edge of lane and front face of the hazard as well as the edge of lane and front face of the 

guardrail. LONs associated with the lowest crash cost are as shown in Figures 32 through 35. 

LONs associated with maximum cost-effectiveness are shown in Figures 36 through 39. For 

convenience, results were repeated based on the lateral distance from the edge of lane to front 

face of hazard, and front face of hazard to front face of guardrail, as shown in Figures 40 through 

47. All results were color-coded by the optimum percentage of initial 2006 or 2011 RDG 

upstream guardrail LON (“X”). Median and roadside trajectories were markedly different, with 

longer roadside guardrail lengths recommended than median lengths on average for 60-mph (97-

km/h) roads with similar hazard and guardrail offsets.  
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Figure 32. Percent of 2006 RDG Upstream LON (“X”) for Minimum Crash Cost, Hazard on 

Right Side of Road 

 
Figure 33. Percent of 2011 RDG Upstream LON (“X”) for Minimum Crash Cost, Hazard on 

Right Side of Road 
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Figure 34. Percent of 2006 RDG Upstream LON (“X”) for Minimum Crash Cost, Hazard on Left 

Side of Road (Median) 

 
Figure 35. Percent of 2011 RDG Upstream LON (“X”) for Minimum Crash Cost, Hazard on Left 

Side of Road (Median) 
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Figure 36. Percent of 2006 RDG Upstream LON (“X”) for Maximum Cost-Effectiveness, 

Hazard on Right Side of Road 

 
Figure 37. Percent of 2011 RDG Upstream LON (“X”) for Maximum Cost-Effectiveness, 

Hazard on Right Side of Road 
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Figure 38. Percent of 2006 RDG Upstream LON (“X”) for Maximum Cost-Effectiveness, 

Hazard on Left Side of Road (Median) 

 
Figure 39. Percent of 2011 RDG Upstream LON (“X”) for Maximum Cost-Effectiveness, 

Hazard on Left Side of Road (Median) 
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Figure 40. Percent of 2006 RDG Upstream LON (“X”) for Minimum Crash Cost Based on 

Guardrail-to-Hazard Distance, Hazard on Right Side of Road 

 
Figure 41. Percent of 2011 RDG Upstream LON (“X”) for Minimum Crash Cost Based on 

Guardrail-to-Hazard Distance, Hazard on Right Side of Road 
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Figure 42. Percent of 2006 RDG Upstream LON (“X”) for Minimum Crash Cost Based on 

Guardrail-to-Hazard Distance, Hazard on Left Side of Road (Median) 

 
Figure 43. Percent of 2011 RDG Upstream LON (“X”) for Minimum Crash Cost Based on 

Guardrail-to-Hazard Distance, Hazard on Left Side of Road (Median) 
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Figure 44. Percent of 2006 RDG Upstream LON (“X”) for Maximum Cost-Effectiveness Based 

on Guardrail-to-Hazard Distance, Hazard on Right Side of Road 

 
Figure 45. Percent of 2011 RDG Upstream LON (“X”) for Maximum Cost-Effectiveness Based 

on Guardrail-to-Hazard Distance, Hazard on Right Side of Road 
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Figure 46. Percent of 2006 RDG Upstream LON (“X”) for Maximum Cost-Effectiveness Based 

on Guardrail-to-Hazard Distance, Hazard on Left Side of Road (Median) 

 
Figure 47. Percent of 2011 RDG Upstream LON (“X”) for Maximum Cost-Effectiveness Based 

on Guardrail-to-Hazard Distance, Hazard on Left Side of Road (Median) 
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suggested that some median guardrails in Kansas had actual LONs five times longer than the 

length that would minimize crash cost and maximize cost-effectiveness. Although some hazards 

located on the right side of the roadway had higher cost-effectiveness with lengths of 

approximately 30 to 40 percent of the RDG LONs, most right-side guardrail lengths were 

determined to be approximately twice as large as those calculated using the 2006 RDG values 

and between 60 and 90 percent of the guardrail lengths determined using the 2011 RDG values. 

The most cost-effective upstream guardrail LON (“X”) was always less than or equal to 

the lowest crash cost guardrail LON (“X”). The maximum cost-effectiveness guardrail upstream 

LON (“X”) length may be associated with a higher percentage of impacts with the shielded 

hazard, so long as installation cost savings justify higher crash costs. Likewise, lowest crash cost 

guardrail lengths did not eliminate impacts with the shielded hazard, but did significantly reduce 

the risk of impact. Guardrail upstream LON (“X”) length options associated with the lowest 

crash costs were also typically much shorter than 2011 recommendations. Regardless of which 

guardrail length option is selected, shorter guardrail lengths are frequently warranted.  

5.4 New Effective Guardrail Runout Lengths 

The 2006 and 2011 AASHTO RDG utilized runout lengths based on historical data from 

vehicles encroaching on the side of the road. However, LON recommendations obtained from 

RSAP results suggested that shorter LONs may provide a substantial improvement with regard to 

total crash cost and maximum cost-effectiveness.  

Recall from Equation 32 that the guardrail length was a function of the runout length and 

a dimensionless relationship the lateral distance from the face of the guardrail to back edge of 

hazard as well as the lateral distance from the edge of lane to the front face of the guardrail. 

According to AASHTO LON calculation procedures, the LON is calculated using the formula 

shown in Equation 33.   
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⁄

) Equation 33 

LA = lateral distance from travel way to back of hazard 

L2 = lateral distance from edge of travel way to front face of barrier 

X = LON 

LR = guardrail runout length 

The LON equation shown in Equation 33 was rearranged to solve for LR as a function of 

X. Then, new LR
*
 values were calculated by replacing X with X

*
, the optimized LON. The 

expression used to solve for LR
*
 is shown in Equation 34, and a schematic illustration of the 

equation parameters is shown in Figure 48. 

   
    (  

  
  

⁄ ) Equation 34 

LA = lateral distance from travel way to back of hazard 

L2 = lateral distance from edge of travel way to front face of barrier 

LR
*
 = optimized runout length; longitudinal distance vehicle would have to travel to 

impact hazard, measured parallel with road 

X
*
 = optimized guardrail length-of-need (based on RSAPv3 results) 

 
Figure 48. Re-Analysis of AASHTO Runout Length based on Optimized Guardrail Length 

New LONs were plotted against the dimensionless relationship between guardrail and 

hazard lateral offset shown in Equation 34, as shown in Figures 49 through 56. It was observed 
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Figure 49. Recommended Guardrail Lengths for ADT < 6,000, 60 mph (97 km/h) Roadway, 

Right Side  

 
Figure 50. Recommended Guardrail Lengths for ADT > 6,000, 60 mph (97 km/h) Roadway, 

Right Side 
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Figure 51. Recommended Guardrail Lengths for ADT < 6,000, 60 mph (97 km/h) Roadway, Left 

Side (Median) 

 
Figure 52 Recommended Guardrail Lengths for ADT > 6,000, 60 mph (97 km/h) Roadway, Left 

Side (Median) 
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Figure 53. Recommended Guardrail Lengths for ADT < 6,000, 70 mph (113 km/h) Roadway, 

Right Side  

 
Figure 54. Recommended Guardrail Lengths for ADT > 6,000, 70 mph (113 km/h) Roadway, 

Right Side 
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Figure 55. Recommended Guardrail Lengths for ADT < 6,000, 70 mph (113 km/h) Roadway, 

Left Side (Median) 

 
Figure 56. Recommended Guardrail Lengths for ADT > 6,000, 70 mph (113 km/h) Roadway, 

Left Side (Median) 
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that for 60-mph (97-km/h) speed limits, the optimized guardrail lengths followed an 

approximately linear trend. For 70-mph (113-km/h) speed limits, data was more scattered, but 

still generally increased as the ratio 1 – L2/LA increased. Thus, a linear best-fit line was applied 

to the data for both the minimum crash cost and maximum cost-effectiveness X
*
 guardrail LONs. 

Best-fit lines for each data set were also shown in Figures 49 through 56, and new best-fit LR
*
s 

were tabulated and compared to the LRs provided in the 2006 and 2011 AASHTO RDGs, as 

shown in Table 40. 

Table 40. Recommended Runout Lengths and Comparison to Literature 

 
 

Remarkably, the lowest crash cost optimized guardrail runout length for 60-mph (97-

km/h) roads was lower for traffic volumes of more than 6,000 vehicles / day (vpd), than for 

traffic volumes less than 6,000 vpd. However, those differences were very small (< 4%) and are 

likely the result of statistical noise. In some scenarios, particularly left-side (median) hazards 

with 60 mph (97 km/h) speed limits, the lowest crash cost and highest cost-effectiveness 

solutions were the same and thus the optimized runout lengths were also equal. When this 

occurred, the lowest crash cost results (red squares) overlapped the highest cost-effectiveness 

(blue diamonds) data points, as shown in Figures 49 through 56. 

Lowest Crash 

Cost

Highest Cost-

Effectiveness

2006 RDG

(Table 12)

2011 RDG

(Table 14)

2,000-6,000 203 (62) 176 (54) 394 (120) 250 (76)

> 6,000 198 (60) 190 (58) 426 (130) 300 (91)

2,000-6,000 275 (84) 251 (77) 443 (135) 330 (101)

> 6,000 278 (85) 259 (79) 475 (145) 360 (110)

2,000-6,000 133 (41) 133 (41) 394 (120) 250 (76)

> 6,000 133 (41) 133 (41) 426 (130) 300 (91)

2,000-6,000 289 (88) 223 (68) 443 (135) 330 (101)

> 6,000 290 (88) 232 (71) 475 (145) 360 (110)

Right Side

(Roadside)

60 mph

70 mph

Left Side

(Median)

60 mph

70 mph

Runout Lengths, ft (m)

ADT
LR

*
LR



August 12, 2014 

MwRSF Report No. TRP-03-284-14 

86 

As previously mentioned, repair costs were neglected in order to bias the results towards 

more frequent installations of guardrail, and longer lengths when used. Thus, the only direct cost 

for each scenario applicable in each scenario was the installation cost of the system, which was 

approximately a linear function of system length. Minimization of the crash cost occurred when 

the total cost of all vehicle crashes, consisting of impact with the hazard and the guardrail, was 

limited. Generally, impacts with the hazard were more severe than all guardrail crashes 

combined, so crash costs were more significantly reduced when the rate of impact with the 

bridge pier was reduced. Even with the bias in the results toward more often installation of 

longer guardrail systems, optimized LONs were still much shorter on average than LONs 

recommended in either the 2006 or 2011 AASHTO RDGs.  

In addition, impacts with the shielded hazard were never completely prevented with any 

upstream guardrail LON (“X”). The optimized guardrail LON was determined to be the one at 

which the reduction in the total crash cost due to hazard impacts was less than the increase in 

crash cost associated with more common guardrail impacts, which could also be severe. 



August 12, 2014 

MwRSF Report No. TRP-03-284-14 

87 

6 DISCUSSION 

Throughout this study, crash data was limited to Kansas roadways because of crash data 

availability, and road conditions were primarily flat, minimizing skewing effects due to ditches 

or sideslopes. These roads have a high relative volume of passenger vehicles, medians which 

were often at least 60 ft (18 m) wide, and relatively flat median and roadside slopes. 

Furthermore, the most predominant shielded point hazard was a bridge pier.  

The study period extended between 2002 and 2006, and predominantly involved 

guardrail installed consistently with the 2006 RDG. The 2006 RDG utilized identical runout 

length recommendations as the 2002 and 1996 versions of the RDG.  

In narrow medians, guardrail lengths may need to be longer due to concerns for cross-

median crash risk. Based on ADT and cross-median crash frequencies, the analysis could be re-

analyzed with an additional continuous hazard extending across the entire median to represent 

cross-median crash risk, and optimal guardrail risks could be re-analyzed. Similar research for 

hazard-free median conditions was previously conducted by Peterson and Sicking [28]. There 

may be other concerns relevant to median applications besides shielding hazards. 

Additional reasons for selecting longer guardrail lengths could include possibility of 

damage to infrastructure, such as electrical equipment or utilities, large overhead sign supports 

which could fall on roadways, or concerns for pedestrian or other human risk factors which 

warrant higher protection levels. For these features, the crash costs may not be a sufficient 

estimate of the total costs due to run-behind-guardrail crashes, and as such could bias results 

toward longer guardrail lengths. Designers are urged to use discretion to accommodate these 

sensitive, critical locations. 

The most recent version of the Roadside Safety Analysis Program (RSAPv3) was used to 

assess the cost-effectiveness of guardrail length alternatives, as well as the economic benefits of 
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each alternative using the FHWA Comprehensive Cost data for 2012. Hundreds of highway 

scenarios were modeled using this program. Even though RSAPv3 presents significant 

improvements in relation to the older RSAP version (V2), it still has its limitations and cannot 

simulate real-world crashes with 100 percent accuracy. Some potential programing errors were 

also identified during the use of this program, including: 

1. Initial use of the program resulted in auto-ranking alternatives incorrectly based 

on direct cost. This error was fixed and a newer version of the program was used. 

2. With five alternative guardrail lengths considered and for hazards located on the 

right side of a divided roadway, the predicted rates of rollover, run-behind 

guardrail rate, and average crash severity were markedly different for the fifth 

alternative, compared to the other four. Reasons for the variation were unknown. 

Although the total crash costs were typically within the expected range based on 

longer or shorter guardrail lengths, some of the crash cost estimates were outliers. 

To avoid the possibility of error, results from the fifth alternative of right-side-of-

road RSAPv3 analyses were neglected and only four options were considered for 

each scenario: “Do Nothing”, 2011 or 2006 RDG guardrail length, 40% of 2011 

or 2006 RDG guardrail length, and 70% of 2011 or 2006 guardrail length. 

3. The program was deterministic; thus, a singular solution was consistently found 

for the same ADT, speed limit, hazard, and lateral offset configuration. 

Nonetheless, some simulations, using identical hazard location, traffic volume, 

side of road, feature severity, and encroachment probability, varied between two 

different simulations. Although the variations were unexpected, they were not 

determined to be significant, and did not ultimately affect guardrail selection 

recommendations. 
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Besides the caveats of computer simulation of benefit-to-cost analyses, guardrails were 

simulated with arbitrarily short lengths in many of the scenarios analyzed. Actual guardrail 

systems have a finite redirection capacity and require sufficient guardrail length to redirect or 

capture an errant vehicle. Currently, the minimum guardrail length recommended for a Midwest 

Guardrail System (MGS) guardrail system is 75 ft (22.9 m), based on successful crash testing 

conducted at the Midwest Roadside Safety Facility (MwRSF) [30]. For most crashworthy end 

terminals, the beginning of the LON is the third post from the upstream end, or 12 ft - 6 in. (3.81 

m). The downstream end of the LON of an MGS system was determined to be approximately 31 

ft – 3 in. (9.5 m), or the sixth post, from the downstream end [31]. Therefore, the window of 

vehicle redirection for vehicles impacting at 62.1 mph (100 km/h) and 25 degrees is 31 ft – 3 in. 

(9.5 m) long. Impacts outside of this range could result in the guardrail gating and the vehicle 

encroaching on the back side of the guardrail system. 

For short guardrail systems, there is some concern that compression-based, energy-

absorbing guardrail terminals with extruder heads may not be able to develop the necessary 

compressive rail load. Guardrail may disengage prematurely from posts downstream from impact 

during end-on impacts. Tensile capacities of upstream anchors may also require modifications 

for short system lengths [30]. Another concern for shorter-length systems include the possibility 

for vehicles to impact fixed objects, or the hazard, after disengaging from the terminal and 

traversing within the 20 ft (6.1 m) wide by 70 ft (21.3 m) long clear zone behind the guardrail 

terminal recommended by AASHTO. Alternatively, a vehicle impacting the upstream terminal 

may impact a hazard while still engaged with the terminal if the hazard is located within 50 ft (15 

m) of the upstream end of the guardrail. 

Some states utilize a minimum length for standard guardrail of 175 ft (53 m) based on 

historical crash testing programs and associated safety performance. For these hazards, it is 
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recommended that guardrail be installed with at least 31 ft – 6 in. (9.5 m) downstream from the 

downstream end of the hazard. Designers may be flexible with guardrail starting and ending 

locations if the standard length of guardrail exceeds recommendations provided in this report. 

Alternatively, crash cushions or sand barrel arrays may be more feasible if recommended 

guardrail lengths are too low and the alternative safety treatments are cost-competitive. 

Underreported crashes involving Kansas guardrails could influence the 

recommendations. Ray examined crashes in Iowa, North Carolina, and Connecticut and 

determined that 50 percent of guardrail crashes were unreported [29]. Underreported crashes 

could potentially have two competing effects on safety and cost-effectiveness recommendations. 

These crashes tend to be PDO or lower-injury level crashes, which can increase guardrail repair 

costs and make longer guardrail lengths less desirable. Using the crash report data from Kansas, 

the average crash cost of guardrail crashes using the 2012 FHWA comprehensive cost was 

$100,111.05, which was 26 percent higher than the average non-guardrail crash cost of 

$86,983.63. However, non-guardrail crash costs were based on a small sample and could be 

subject to change with additional data. 

Alternatively, underreported crashes may include low-angle roadside departures in which 

an errant vehicle drifts off of the side of the road. Low-angle departures could result in a higher 

proportion of impacts with the shielded hazard. For these scenarios, longer tangent guardrail 

lengths may be more advantageous. However, large hazard and guardrail offsets could reduce the 

frequency of these collisions to a greater extent than longer guardrail lengths, as well as placing 

the guardrail as close to the hazard as feasible. Although terminal impacts may be more severe 

than guardrail in general, the rate of terminal impacts is unlikely to be significantly different with 

different guardrail lengths. 
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Throughout this study, consideration was given to runout lengths for passenger vehicles, 

such as cars and pickups. Currently runout lengths for large trucks are unknown. Nonetheless, 

most guardrail systems are not intended to capture or redirect large trucks and may not perform 

as desired during those crashes, including contributing to large-vehicle rollovers. Reducing 

guardrail length could conversely reduce the number of large-vehicle truck crashes resulting in 

undesirable rollovers. Nonetheless, this relationship has not been studied. 

All guardrail installations considered in this report were tangent guardrails. Flared 

guardrail installations were not considered in the analysis, because flares were rarely observed in 

the crash data. It is recommended that current AASHTO recommendations for treating flared end 

terminations should be applied to this research with the new guardrail runout lengths. 

Urban roadways were characterized by an increased crash rate per mile and per million 

vehicle miles, compared to rural roadways. Drivers on urban roadways are typically exposed to 

significantly more hazards in terms of interchanges, overpasses or underpasses, sign supports, 

utility poles and other roadside features. Driver distraction and confusion may also lead to 

increased rates of run-off-road excursions, in addition to “driver overload”, which is a 

diminished sense of focus caused by diverting attention to signs, billboards, adjacent traffic, or 

other urban-related factors. The distributed attention to other factors may be referred to as 

“driver workload”. 

Lastly, different roadway profiles and speed limits were not considered because they 

were outside of the scope of this research effort. As such, research findings are limited to 

freeways with wide, flat medians and relatively flat sideslopes. 

 



August 12, 2014 

MwRSF Report No. TRP-03-284-14 

92 

7 SUMMARY AND CONCLUSIONS 

7.1 Summary 

A study was conducted to evaluate tangent guardrail length based on the 2006 AASHTO 

RDG using crash data obtained for Kansas interstates and freeways. Roadway, hazard, crash, and 

guardrail parameters were tabulated for each interstate roadway in Kansas, including: hazard 

offsets, numbers, and types; speed limits; guardrail locations, lengths, offsets, and counted 

installations; and whether the roads were predominantly urban or rural. Accident reports 

involving crashes on these roadways were analyzed, and 654 crashes were identified in which an 

errant vehicle either impacted or traveled behind a guardrail between 2002 and 2006.  

For each crash, the guardrail length was partitioned into four segments: 1
st
 quarter 

(including upstream end terminal); 2
nd

 quarter; 3
rd

 quarter; and 4
th

 quarter (including downstream 

end terminal), and impact locations into each quarter of the guardrail on each side of the road 

were identified. Approximately 46 percent of all terminal crashes resulted in reported injuries as 

compared to 34 percent of non-terminal crashes. There was no significant difference in injury 

rates between median and roadside guardrail crashes. 

Crashes which involved guardrails shielding culvert hazards had the lowest injury rate of 

28 percent as compared to the highest rate of 41 percent for crashes involving guardrails 

shielding signs and poles. A larger portion of poles and signs were located on urban highways, 

such as I-635 and I-235. Culverts were predominantly located on rural roads. 

Based on an analysis of crash data, only 2 percent or 14 crashes involved a vehicle 

traveling behind the guardrail, and only 0.3 percent (i.e., 2 crashes) involved a vehicle hitting a 

shielded hazard. Both impacts with the shielded hazards involved secondary hazards only; the 

primary hazard which warranted the shielding was never impacted. Injury percentages were 
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similar for impacts in which the vehicle impacted the hazard as when the vehicle impacted the 

guardrail. However, the data set was too limited to make broad conclusions. 

Guardrail and shielded hazard crash rates were calculated using different exposure 

variables. By multiplying the average ADT by the observed number of guardrails on the 

roadways on a per-year basis, a crash rate of 0.017 crashes per trillion vehicle-guardrail was 

calculated for ran-behind guardrail crashes and 0.99 crashes per trillion vehicle-guardrail for 

guardrail crashes. Likewise, by comparing crash costs and controlling for exposure, the risk was 

US$0.0002 per vehicle for guardrail crashes and US$0.000005 per vehicle for ran-behind 

guardrail crashes.  

In order to determine the most cost-effective and lowest crash cost lengths of guardrail, 

rigid point hazards were analyzed in RSAP using different guardrail lengths. Both lowest crash 

cost and highest cost-effectiveness guardrail lengths were frequently between 40 and 70 percent 

of 2006 RDG guidelines. Based on the results of the RSAPv3 analysis, new runout length 

numbers were recommended, consistent with the corresponding guardrail lengths. 

7.2 Conclusions 

The study results suggested that guardrail lengths-of-need on low-grade, divided 

freeways with flat sideslopes, calculated using either the 2006 or 2011 RDG runout length 

values, are likely excessively long. Current recommendations for guardrail length are 

significantly greater than lengths associated with the lowest crash cost or highest cost-

effectiveness.  

Guardrail lengths longer than necessary to shield the hazard can pose several problems to 

state DOTs. First, excessively long guardrail installations are expensive to install and will incur 

more repair costs over the design life than shorter systems. The cost difference between shorter 

and longer guardrail lengths could be substantial, and cost savings may enable a state to allocate 
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funding for additional safety treatments. Second, shorter guardrail lengths are consistent with the 

stated goals of the RDG. In particular, priority item no. 1 corresponds to removing a hazard. It is 

known that a guardrail is also considered a roadside obstacle that can incur injury or fatality to an 

occupant of an errant vehicle. For shorter length systems consistent with recommendations in 

this study, it is expected that the decreased rate of fatalities and injuries associated with 

eliminating unnecessary guardrail will be greater than the increased rate of fatalities and injuries 

resulting from impact with shielded hazards. Until a system can be constructed and tested which 

eliminates any risk of injury or fatality and could be installed along every roadside shoulder, 

guardrail length should be optimized to minimize the number of severe and fatal crashes. 

During the crash data and benefit-to-cost analyses, efforts were made to accommodate 

the higher average crash severity of a terminal compared to the guardrail tangent length, to 

ensure accuracy in the estimated crash cost. The total crash cost related directly to the terminal is 

not believed to be a function of terminal location, but total guardrail crash cost does have a cost 

component associated the increased severity of a terminal impact. If the severity of an average 

terminal impact decreased, it is likely that the cost-effectiveness of shorter lengths of guardrail 

would increase, although the magnitude of that change is currently unknown. 

The report analysis specifically consisted of the evaluation of W-beam system length-of-

need. Results from this report are believed to be representative of other types of semi-rigid 

guardrail systems with similar installation costs and crash severities. If installation costs are 

significantly different, but crash severities are similar, then guidelines for the lowest crash cost 

option (i.e., safest) are expected to be unchanged. However, for systems with significantly 

different average crash severities, results of the length-of-need evaluation may be significantly 

different.  
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8 RECOMMENDATIONS 

To validate the study findings for use on alternative roadway functional classes and speed 

limits, a dataset which incorporates data from other states, different sideslopes, road profiles, and 

hazard types should be collected and analyzed using similar methods as described in this report. 

The expanded dataset should also include other highway functional classes, other states, and 

locations where guardrails have been designed based on 2011 RDG runout lengths. Crashes 

occurring on roads with more variability in sideslope profiles, higher urban representation, and 

broader variety of hazard types would also strengthen the study findings. 

Using the Kansas crash data and RSAPv3 analyses, the study results indicated that 

roadway traffic volume did not have a significant effect on the optimized runout lengths for 

freeways with wide, flat, divided medians and relatively flat roadsides. As such, it may be 

possible to ignore the effects of traffic volume when installing guardrail on these roadways. In 

contrast, significant differences were observed for left- and right-side roadway departures due to 

characteristics of departing vehicle trajectories. Further research is necessary to evaluate other 

roadway classifications, traffic volumes, hazard types, and departure side (right or left) 

combinations. 

The 65, 75, and 80-mph (105, 121, and 129 km/h) roadway runout lengths were linearly 

extrapolated from the results of the 60- and 70-mph (97 and 113-km/h) freeways. Currently, the 

optimal guardrail length for use on 80 mph (129 km/h) roadways is unknown, and may require 

further analysis to estimate. Likewise, the study was not conducted for roads with speed limits 

less than 60 mph (97 km/h). Although absolute crash costs may be lower with shorter guardrail 

lengths on these lower-speed roads, it is believed that a more conservative approach would be to 

utilize results from the 60-mph (97-km/h) road analysis for all divided freeways with speed 

limits less than 60 mph (97 km/h).  
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Further research should be conducted to determine the recommended guardrail lengths at 

increased travel speeds. Many of the optimum LONs were similar to recommendations made by 

Sicking and Wolford [20], and many were even shorter, as shown in Figures 49 through 56. 

Optimized runout lengths for freeways with wide, flat divided medians are shown in Table 41.  

Table 41. Recommended Guardrail Runout Lengths for Right and Left Sides of Divided 

Freeways 

Speed Limit, 

mph (km/h) 

Runout Length, ft (m) 

Left Side 

(Median) 

Right Side 

(Roadside) 

80 (129) 415 (126) 352 (107) 

75 (121) 352 (107) 315 (96) 

70 (113) 289 (88) 278 (85) 

65 (105) 211 (64) 241 (73) 

≤ 60 (97) 133 (41) 203 (62) 

*Note, results extrapolated from freeways with PSL = 60 or 70 mph (97 or 121 km/h) 

 

There may be concerns that results of this study may not be representative of all 

freeways, and making guardrail lengths too short will cause a much higher rate of impact and 

injury or fatality with the shielded hazard than was predicted in this study. Such concerns are 

valid, as this study is the first to evaluate very short approach guardrail lengths. State DOTs may 

pursue one of the following options for implementing all, some, or none of the recommendations 

contained in this report: 

1. Findings and recommendations from this report may be implemented exactly as 

specified for some or all divided freeways. This approach could provide an aggressive 

measure of the validity of study findings, and would warrant a follow-up performance 

evaluation to ensure crash data supports the use of shorter guardrails. 

2. Findings and recommendations from this report could be applied to a sample of 

roadways, and compared in real time to similar guardrails on similar roads. This 
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method would limit any adverse effects from excessively short guardrail lengths, or 

could support the use of less guardrail if adverse effects are minimal. 

3. State DOTs could pursue a modified table of recommendations for new guardrail 

lengths; for example, results could be applied with the caveat that the minimum 

guardrail length is not less than 70% of what was specified in the AASHTO 2011 

RDG. This method is believed to be a conservative compromise between 

implementing the cost- and life-saving research contained herein without shortening 

guardrail lengths to the extent there is concern about the rate of ran-behind-guardrail 

crashes resulting in impact with the primary shielded hazard. 

4. State DOTs could utilize a minimum guardrail length of 175 ft (53.3 m), which is the 

standard guardrail length used during crash testing and has been used in compressive 

terminal testing. Alternatively, states could utilize minimum guardrail lengths 

recommended by end terminal manufacturers to remain compliant with design 

guidelines. 

5. State DOTs may continue to use existing guidelines or AASHTO recommendations 

and delay revisions to guardrail length calculations until other states have 

demonstrated positive benefits due to guardrail length reductions. 
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Appendix A. RSAP Results, Hazard on Right Side of Roadway 
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $5,966 $0 -

80 920 $1,499 $4,370 $280

120 880 $1,293 $5,561 $356

130 870 $1,335 $5,858 $375

170 830 $1,488 $7,049 $451

190 810 $1,562 $7,644 $489

260 740 $1,809 $9,728 $623

N/A N/A N/A N/A 0 996 $5,391 $0 -

60 940 $1,969 $3,774 $242

90 910 $1,525 $4,667 $299

100 900 $1,416 $4,965 $318

130 870 $1,205 $5,858 $375

140 860 $1,188 $6,156 $394

200 800 $1,299 $7,942 $508

N/A N/A N/A N/A 0 996 $2,295 $0 -

80 920 $1,020 $4,370 $280

110 890 $1,062 $5,263 $337

120 880 $989 $5,561 $356

170 830 $1,127 $7,049 $451

180 820 $1,179 $7,347 $470

250 750 $1,434 $9,431 $604

N/A N/A N/A N/A 0 996 $2,295 $0 -

60 940 $890 $3,774 $242

90 910 $823 $4,667 $299

100 900 $840 $4,965 $318

130 870 $911 $5,858 $375

160 840 $986 $6,751 $432

200 800 $1,088 $7,942 $508

N/A N/A N/A N/A 0 996 $2,295 $0 -

50 950 $716 $3,477 $223

70 930 $743 $4,072 $261

100 900 $828 $4,965 $318

110 890 $855 $5,263 $337

150 850 $953 $6,454 $413

50%

60%

120 80 30%

50 50 40%

50%

90 60 30%

50%

140 130 70%

120 120 50%

110%

50% 80%

80% 120%

2011 

RDG 

LON

(ft)

2006 

RDG 

LON

(ft)

Lowest Crash Cost Highest Cost-EffectivenessPosted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

Guardrail 

Offset

(ft)

RSAP 

Hazard 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

Modeled 

LON

 (ft)

Start 

Station 

(ft)

Annualized 

Construction 

Cost

Construction 

Cost

Annual 

Crash Cost

80%

80%

50% 80%

40% 60%

82
12 66 236.4 150.0

60 6000 26 82
16 70 183.9 116.7

60 6000 12 68
60 246.3 156.36

60 6000 18 74
12 66 179.1 113.6

60 6000 26

60 6000 26 82
20 74 131.3 83.3
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $1,940 $0 -

80 920 $1,379 $4,370 $280

110 890 $1,062 $5,263 $337

130 870 $1,027 $5,858 $375

180 820 $1,148 $7,347 $470

190 810 $1,179 $7,644 $489

280 720 $1,434 $10,324 $661

N/A N/A N/A N/A 0 996 $1,940 $0 -

70 930 $1,140 $4,072 $261

100 900 $855 $4,965 $318

110 890 $871 $5,263 $337

160 840 $982 $6,751 $432

170 830 $1,008 $7,049 $451

240 760 $1,184 $9,133 $585

N/A N/A N/A N/A 0 996 $1,940 $0 -

60 940 $949 $3,774 $242

90 910 $790 $4,667 $299

130 870 $876 $5,858 $375

140 860 $899 $6,156 $394

190 810 $1,014 $7,644 $489

N/A N/A N/A N/A 0 996 $1,940 $0 -

50 950 $729 $3,477 $223

70 930 $677 $4,072 $261

100 900 $740 $4,965 $318

110 890 $757 $5,263 $337

150 850 $839 $6,454 $413

60%

70%

80%50% 80%

50% 80%70 50 40%

90 90 50%

130 110 40%

Modeled 

LON

 (ft)

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Highest Cost-Effectiveness

100 100 50% 70%

50% 80%

50% 70%

Lowest Crash CostPosted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

2011 

RDG 

LON

(ft)

60 6000 32 88
20 74 175.1 111.1

60 6000 32 88
24 78 131.3 83.3

60 6000 32 88
12 66 262.7 166.7

60 6000 32 88
16 70 218.9 138.9
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $9,017 $0 -

90 910 $2,116 $4,667 $299

120 880 $1,955 $5,561 $356

150 850 $2,134 $6,454 $413

200 800 $2,414 $7,942 $508

280 720 $2,839 $10,324 $661

N/A N/A N/A N/A 0 996 $8,148 $0 -

70 930 $2,702 $4,072 $261

90 910 $3,367 $4,667 $299

110 890 $1,916 $5,263 $337

150 850 $1,771 $6,454 $413

210 790 $2,011 $8,240 $527

N/A N/A N/A N/A 0 996 $3,468 $0 -

90 910 $1,437 $4,667 $299

120 880 $1,494 $5,561 $356

140 860 $1,569 $6,156 $394

200 800 $1,829 $7,942 $508

270 730 $2,135 $10,026 $642

N/A N/A N/A N/A 0 996 $3,468 $0 -

70 930 $1,210 $4,072 $261

100 900 $1,270 $4,965 $318

110 890 $1,300 $5,263 $337

160 840 $1,491 $6,751 $432

220 780 $1,720 $8,538 $547

N/A N/A N/A N/A 0 996 $3,468 $0 -

60 940 $1,103 $3,774 $242

70 930 $1,122 $4,072 $261

90 910 $1,209 $4,667 $299

120 880 $1,330 $5,561 $356

160 840 $1,475 $6,751 $432

60%

50%

60 60 40%

70 70 40%

50%

80%

90 90 40%

150 110 60%80% 110%

60%120 120 50%50% 60%

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost

40% 50%

40% 50%

40% 60%

2006 

RDG 

LON

(ft)

2011 

RDG 

LON

(ft)

Modeled 

LON

 (ft)

Highest Cost-Effectiveness

60 12000 12 68
6 60 266.3 187.5

Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

60 12000 26 82
16 70 198.8 140.0

60 12000 26 82
20 74 142.0 100.0

60 12000 18 74
12 66 193.6 136.4

60 12000 26 82
12 66 255.6 180.0
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $2,932 $0 -

100 900 $1,744 $4,965 $318

130 870 $1,552 $5,858 $375

160 840 $1,654 $6,751 $432

220 780 $1,908 $8,538 $547

300 700 $2,254 $10,919 $699

N/A N/A N/A N/A 0 996 $2,932 $0 -

80 920 $1,549 $4,370 $280

110 890 $1,327 $5,263 $337

130 870 $1,378 $5,858 $375

180 820 $1,560 $7,347 $470

250 750 $1,829 $9,431 $604

N/A N/A N/A N/A 0 996 $2,932 $0 -

70 930 $1,268 $4,072 $261

90 910 $1,195 $4,667 $299

110 890 $1,256 $5,263 $337

150 850 $1,393 $6,454 $413

210 790 $1,602 $8,240 $527

N/A N/A N/A N/A 0 996 $2,932 $0 -

60 940 $1,006 $3,774 $242

70 930 $1,081 $4,072 $261

90 910 $1,081 $4,667 $299

120 880 $1,181 $5,561 $356

160 840 $1,429 $6,751 $432

60%

50%

60 60 40%

90 70 40%50% 70%

70%

70%

110 110 50%

130 130 50%50% 70%

50% 70%

40% 60%

Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

2011 

RDG 

LON

(ft)

Modeled 

LON

 (ft)

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost Highest Cost-Effectiveness

60 12000 32 88
20 74 189.3 133.3

60 12000 32 88
24 78 142.0 100.0

60 12000 32 88
12 66 284.0 200.0

60 12000 32 88
16 70 236.7 166.7
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $9,723 $0 -

90 910 $2,282 $4,667 $299

120 880 $2,108 $5,561 $356

150 850 $2,301 $6,454 $413

200 800 $2,603 $7,942 $508

280 720 $3,061 $10,324 $661

N/A N/A N/A N/A 0 996 $8,786 $0 -

70 930 $2,913 $4,072 $261

90 910 $3,631 $4,667 $299

110 890 $2,066 $5,263 $337

150 850 $1,909 $6,454 $413

210 790 $2,168 $8,240 $527

N/A N/A N/A N/A 0 996 $3,740 $0 -

90 910 $1,549 $4,667 $299

120 880 $1,611 $5,561 $356

140 860 $1,692 $6,156 $394

200 800 $1,972 $7,942 $508

270 730 $2,302 $10,026 $642

N/A N/A N/A N/A 0 996 $3,740 $0 -

70 930 $1,304 $4,072 $261

100 900 $1,370 $4,965 $318

110 890 $1,401 $5,263 $337

160 840 $1,607 $6,751 $432

220 780 $1,855 $8,538 $547

N/A N/A N/A N/A 0 996 $3,740 $0 -

60 940 $1,189 $3,774 $242

70 930 $1,210 $4,072 $261

90 910 $1,304 $4,667 $299

120 880 $1,434 $5,561 $356

160 840 $1,591 $6,751 $432

60%60 60 40%40% 60%

110%

60%

150 150 80%

120 120 50%

50%

50%

70 70 40%

90 90 40%

50% 60%

80% 110%

40% 50%

40% 50%

2011 

RDG 

LON

(ft)

Modeled 

LON

 (ft)

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost Highest Cost-Effectiveness

60 30000 12

Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

60 30000 26 82
12 66 255.6 180.0

60 30000 26 82
16 70 198.8 140.0

68
6 60 266.3 187.5

60 30000 18 74
12 66 193.6 136.4

60 30000 26 82
20 74 142.0 100.0
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $3,161 $0 -

100 900 $1,880 $4,965 $318

130 870 $1,674 $5,858 $375

160 840 $1,783 $6,751 $432

220 780 $2,058 $8,538 $547

300 700 $2,430 $10,919 $699

N/A N/A N/A N/A 0 996 $3,161 $0 -

80 920 $1,671 $4,370 $280

110 890 $1,420 $5,263 $337

130 870 $1,486 $5,858 $375

180 820 $1,683 $7,347 $470

250 750 $1,972 $9,431 $604

N/A N/A N/A N/A 0 996 $3,161 $0 -

70 930 $1,367 $4,072 $261

90 910 $1,288 $4,667 $299

110 890 $1,354 $5,263 $337

150 850 $1,502 $6,454 $413

210 790 $1,727 $8,240 $527

N/A N/A N/A N/A 0 996 $3,161 $0 -

60 940 $1,084 $3,774 $242

70 930 $1,104 $4,072 $261

90 910 $1,166 $4,667 $299

120 880 $1,274 $5,561 $356

160 840 $1,408 $6,751 $432

60 60 40%

70%

70%

90 90 50%

110 110 50%

60%

70%130 130 50%50% 70%

50% 70%

50% 70%

40% 60%

Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

2011 

RDG 

LON

(ft)

Modeled 

LON

 (ft)

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost Highest Cost-Effectiveness

60 30000 32 88
16 70 236.7 166.7

60 30000 32 88
20 74 189.3 133.3

60 30000 32 88
12 66 284.0 200.0

60 30000 32 88
24 78 142.0 100.0
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $7,467 $0 -

100 900 $2,175 $4,965 $318

130 870 $2,399 $5,858 $375

160 840 $2,566 $6,751 $432

210 790 $2,758 $8,240 $527

220 780 $2,797 $8,538 $547

290 710 $3,010 $10,621 $680

N/A N/A N/A N/A 0 996 $5,877 $0 -

80 920 $1,523 $4,370 $280

100 900 $1,683 $4,965 $318

120 880 $1,842 $5,561 $356

160 840 $2,106 $6,751 $432

170 830 $2,161 $7,049 $451

220 780 $2,392 $8,538 $547

N/A N/A N/A N/A 0 996 $4,973 $0 -

100 900 $2,381 $4,965 $318

120 880 $2,224 $5,561 $356

160 840 $1,933 $6,751 $432

200 800 $1,927 $7,942 $508

210 790 $1,971 $8,240 $527

280 720 $2,250 $10,324 $661

N/A N/A N/A N/A 0 996 $4,973 $0 -

80 920 $1,861 $4,370 $280

100 900 $1,723 $4,965 $318

120 880 $1,638 $5,561 $356

160 840 $1,482 $6,751 $432

170 830 $1,454 $7,049 $451

220 780 $1,601 $8,538 $547

N/A N/A N/A N/A 0 996 $4,973 $0 -

60 940 $1,526 $3,774 $242

80 920 $1,497 $4,370 $280

90 910 $1,537 $4,667 $299

120 880 $1,566 $5,561 $356

130 870 $1,547 $5,858 $375

160 840 $1,519 $6,751 $432

80 60 40% 50%50% 70%

170 160 80% 100%

200 160 60% 80%80% 100%

80% 110%

50%

80 80 40%

100 100 40%

50%40% 50%

40% 50%

Modeled 

LON

 (ft)

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost Highest Cost-Effectiveness

70 6000 18

Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

74
12 66 201.4 150.0

70 6000 26 82
12 66 265.8 198.0

70 6000 12 68
6 60 276.9 206.3

2011 

RDG 

LON

(ft)

70 6000 26 82
16 70 206.7 154.0

70 6000 26 82
20 74 147.7 110.0
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $4,166 $0 -

100 900 $2,595 $4,965 $318

130 870 $2,136 $5,858 $375

170 830 $1,892 $7,049 $451

220 780 $2,020 $8,538 $547

240 760 $2,090 $9,133 $585

310 690 $2,342 $11,217 $718

N/A N/A N/A N/A 0 996 $4,166 $0 -

90 910 $1,982 $4,667 $299

110 890 $1,722 $5,263 $337

140 860 $1,452 $6,156 $394

190 810 $1,508 $7,644 $489

200 800 $1,528 $7,942 $508

260 740 $1,733 $9,728 $623

N/A N/A N/A N/A 0 996 $4,166 $0 -

80 920 $1,612 $4,370 $280

100 900 $1,403 $4,965 $318

120 880 $1,264 $5,561 $356

150 850 $1,240 $6,454 $413

160 840 $1,256 $6,751 $432

210 790 $1,422 $8,240 $527

N/A N/A N/A N/A 0 996 $4,166 $0 -

60 940 $1,427 $3,774 $242

80 920 $1,225 $4,370 $280

90 910 $1,176 $4,667 $299

120 880 $1,055 $5,561 $356

130 870 $1,070 $5,858 $375

160 840 $1,196 $6,751 $432

120 120 80% 110%80% 110%

150 120 60% 80%

140 140 60% 80%60% 80%

80% 100%

170 170 60% 80%60% 80%

Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

2011 

RDG 

LON

(ft)

Modeled 

LON

 (ft)

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost Highest Cost-Effectiveness

70 6000 32 88
12 66 295.3 220.0

70 6000 32 88
16 70 246.1 183.3

70 6000 32 88
20 74 196.9 146.7

70 6000 32 88
24 78 147.7 110.0



 

 

A
u

g
u

st 1
2

, 2
0
1

4
  

M
w

R
S

F
 R

ep
o

rt N
o
. T

R
P

-0
3

-2
8
4
-1

4
 

1
1
1
 

 

 

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $11,285 $0 -

110 890 $3,427 $5,263 $337

140 860 $3,722 $6,156 $394

170 830 $3,924 $7,049 $451

220 780 $4,227 $8,538 $547

240 760 $4,315 $9,133 $585

310 690 $4,671 $11,217 $718

N/A N/A N/A N/A 0 996 $8,881 $0 -

80 920 $2,301 $4,370 $280

100 900 $2,543 $4,965 $318

130 870 $2,890 $5,858 $375

170 830 $3,265 $7,049 $451

180 820 $3,346 $7,347 $470

230 770 $3,683 $8,835 $566

N/A N/A N/A N/A 0 996 $7,516 $0 -

100 900 $3,599 $4,965 $318

130 870 $3,223 $5,858 $375

170 830 $2,886 $7,049 $451

220 780 $3,045 $8,538 $547

230 770 $3,112 $8,835 $566

300 700 $3,506 $10,919 $699

N/A N/A N/A N/A 0 996 $7,516 $0 -

80 920 $2,812 $4,370 $280

110 890 $2,544 $5,263 $337

130 870 $2,381 $5,858 $375

170 830 $2,198 $7,049 $451

180 820 $2,194 $7,347 $470

240 760 $2,526 $9,133 $585

N/A N/A N/A N/A 0 996 $7,516 $0 -

60 940 $2,306 $3,774 $242

80 920 $2,262 $4,370 $280

100 900 $2,359 $4,965 $318

130 870 $2,338 $5,858 $375

140 860 $2,337 $6,156 $394

170 830 $2,305 $7,049 $451

80 60 40% 50%

180 170 80% 100%80% 110%

50% 70%

170 170 60% 80%

80 80 40% 50%40% 50%

60% 80%

110 110 40% 50%40% 50%

Modeled 

LON

 (ft)

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost Highest Cost-Effectiveness

70 12000 12

Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

68
6 60 296.9 225.0

70 12000 18 74
12 66 215.9 163.6

2011 

RDG 

LON

(ft)

70 12000 26 82
20 74 158.3 120.0

70 12000 26 82
12 66 285.0 216.0

70 12000 26 82
16 70 221.7 168.0
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $6,296 $0 -

110 890 $3,628 $5,263 $337

140 860 $3,077 $6,156 $394

180 820 $2,880 $7,347 $470

240 760 $3,159 $9,133 $585

260 740 $3,277 $9,728 $623

330 670 $3,628 $11,812 $756

N/A N/A N/A N/A 0 996 $6,296 $0 -

100 900 $2,755 $4,965 $318

120 880 $2,449 $5,561 $356

160 840 $2,171 $6,751 $432

200 800 $2,309 $7,942 $508

220 780 $2,404 $8,538 $547

280 720 $2,725 $10,324 $661

N/A N/A N/A N/A 0 996 $6,296 $0 -

80 920 $2,437 $4,370 $280

100 900 $2,121 $4,965 $318

130 870 $1,835 $5,858 $375

160 840 $1,898 $6,751 $432

180 820 $1,988 $7,347 $470

230 770 $2,252 $8,835 $566

N/A N/A N/A N/A 0 996 $6,296 $0 -

60 940 $2,156 $3,774 $242

80 920 $1,852 $4,370 $280

100 900 $1,695 $4,965 $318

130 870 $1,617 $5,858 $375

140 860 $1,691 $6,156 $394

170 830 $1,851 $7,049 $451

130 100 60% 80%

130 130 60% 80%60% 80%

80% 110%

160 160 60% 80%

180 180 60% 80%60% 80%

60% 80%

Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

2011 

RDG 

LON

(ft)

Modeled 

LON

 (ft)

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost Highest Cost-Effectiveness

70 12000 32 88
12 66 316.7 240.0

70 12000 32 88
24 78 158.3 120.0

70 12000 32 88
16 70 263.9 200.0

70 12000 32 88
20 74 211.1 160.0
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $12,169 $0 -

110 890 $3,695 $5,263 $337

140 860 $4,013 $6,156 $394

170 830 $4,231 $7,049 $451

220 780 $4,558 $8,538 $547

240 760 $4,652 $9,133 $585

310 690 $5,036 $11,217 $718

N/A N/A N/A N/A 0 996 $9,577 $0 -

80 920 $2,481 $4,370 $280

100 900 $2,743 $4,965 $318

130 870 $3,116 $5,858 $375

170 830 $3,521 $7,049 $451

180 820 $3,608 $7,347 $470

230 770 $3,971 $8,835 $566

N/A N/A N/A N/A 0 996 $8,105 $0 -

100 900 $3,881 $4,965 $318

130 870 $3,476 $5,858 $375

170 830 $3,112 $7,049 $451

220 780 $3,284 $8,538 $547

230 770 $3,355 $8,835 $566

300 700 $3,780 $10,919 $699

N/A N/A N/A N/A 0 996 $8,105 $0 -

80 920 $3,033 $4,370 $280

110 890 $2,743 $5,263 $337

130 870 $2,568 $5,858 $375

170 830 $2,370 $7,049 $451

180 820 $2,366 $7,347 $470

240 760 $2,724 $9,133 $585

N/A N/A N/A N/A 0 996 $8,105 $0 -

60 940 $2,487 $3,774 $242

80 920 $2,439 $4,370 $280

100 900 $2,543 $4,965 $318

130 870 $2,521 $5,858 $375

140 860 $2,520 $6,156 $394

170 830 $2,485 $7,049 $451

80 60 40% 50%

180 170 80% 100%

170 170 60% 80%60% 80%

80 80 40% 50%

110 110 40% 50%40% 50%

40% 50%

80% 110%

50% 70%

Modeled 

LON

 (ft)

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost Highest Cost-Effectiveness

70 30000 18

Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

2011 

RDG 

LON

(ft)

70 30000 12 68
6 60 296.9 225.0

70 30000 26 82
16 70 221.7 168.0

70 30000 26 82
20 74 158.3 120.0

74
12 66 215.9 163.6

70 30000 26 82
12 66 285.0 216.0
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $6,789 $0 -

110 890 $3,912 $5,263 $337

140 860 $3,318 $6,156 $394

180 820 $3,106 $7,347 $470

240 760 $3,406 $9,133 $585

260 740 $3,533 $9,728 $623

330 670 $3,912 $11,812 $756

N/A N/A N/A N/A 0 996 $6,789 $0 -

100 900 $2,971 $4,965 $318

120 880 $2,641 $5,561 $356

160 840 $2,341 $6,751 $432

200 800 $2,490 $7,942 $508

220 780 $2,592 $8,538 $547

280 720 $2,939 $10,324 $661

N/A N/A N/A N/A 0 996 $6,789 $0 -

80 920 $2,627 $4,370 $280

100 900 $2,287 $4,965 $318

130 870 $1,978 $5,858 $375

160 840 $2,046 $6,751 $432

180 820 $2,144 $7,347 $470

230 770 $2,429 $8,835 $566

N/A N/A N/A N/A 0 996 $6,789 $0 -

60 940 $2,325 $3,774 $242

80 920 $1,997 $4,370 $280

100 900 $1,828 $4,965 $318

130 870 $1,744 $5,858 $375

140 860 $1,824 $6,156 $394

170 830 $1,996 $7,049 $451

130 130 60%

80%

80%

130 100 60%

160 160 60% 80%

180 180 60% 80%60% 80%

60% 80%

60% 80%

80% 110%

Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

2011 

RDG 

LON

(ft)

Modeled 

LON

 (ft)

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost Highest Cost-Effectiveness

70 30000 32 88
20 74 211.1 160.0

70 30000 32 88
24 78 158.3 120.0

70 30000 32 88
12 66 316.7 240.0

70 30000 32 88
16 70 263.9 200.0



August 12, 2014 

MwRSF Report No. TRP-03-284-14 

 

115 

M
ay

 1
2

, 2
0
1

3
  

M
w

R
S

F
 R

ep
o

rt N
o
. T

R
P

-0
3

-2
8
4
-1

3
 

M
ay

 1
2

, 2
0
1

3
  

M
w

R
S

F
 R

ep
o

rt N
o
. T

R
P

-0
3

-2
8
4
-1

3
 

Appendix B. RSAP Results, Hazard on Left Side of Roadway 
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $3,252 $0 -

70 930 $1,130 $4,072 $261

100 900 $1,316 $4,965 $318

130 870 $1,461 $5,858 $375

140 860 $1,501 $6,156 $394

150 850 $1,540 $6,454 $413

190 810 $1,675 $7,644 $489

210 790 $1,733 $8,240 $527

N/A N/A N/A N/A 0 996 $2,638 $0 -

80 920 $810 $4,370 $280

120 880 $893 $5,561 $356

130 870 $919 $5,858 $375

160 840 $993 $6,751 $432

180 820 $1,047 $7,347 $470

190 810 $1,079 $7,644 $489

240 760 $1,200 $9,133 $585

270 730 $1,280 $10,026 $642

N/A N/A N/A N/A 0 996 $2,638 $0 -

60 940 $606 $3,774 $242

90 910 $749 $4,667 $299

100 900 $799 $4,965 $318

120 880 $884 $5,561 $356

130 870 $923 $5,858 $375

140 860 $959 $6,156 $394

180 820 $1,078 $7,347 $470

200 800 $1,115 $7,942 $508

80 80 30%

70 70 40%

50%

60 60 30% 50%30%

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

40% 60%

30% 50%

Lowest Crash Cost
Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

2011 

RDG 

LON

(ft)

Modeled 

LON

 (ft)

Highest Cost-Effectiveness

60
228

16126,000

18 10
1812 113.6179.1

125.0197.0

60 6000 18 10
228 159.1250.7

60 6000

60%

50%
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $2,306 $0 -

90 910 $946 $4,667 $299

130 870 $1,026 $5,858 $375

140 860 $1,047 $6,156 $394

180 820 $1,067 $7,347 $470

200 800 $1,087 $7,942 $508

210 790 $1,116 $8,240 $527

270 730 $1,279 $10,026 $642

300 700 $1,351 $10,919 $699

N/A N/A N/A N/A 0 996 $2,306 $0 -

70 930 $739 $4,072 $261

110 890 $813 $5,263 $337

120 880 $832 $5,561 $356

150 850 $857 $6,454 $413

160 840 $861 $6,751 $432

170 830 $862 $7,049 $451

220 780 $952 $8,538 $547

240 760 $998 $9,133 $585

N/A N/A N/A N/A 0 996 $2,306 $0 -

50 950 $606 $3,477 $223

70 930 $658 $4,072 $261

80 920 $703 $4,370 $280

100 900 $789 $4,965 $318

110 890 $833 $5,263 $337

120 880 $850 $5,561 $356

140 860 $873 $6,156 $394

160 840 $892 $6,751 $432

50 50 40% 60%

70 70 30% 50%

90 90 30% 50%30% 50%

30% 50%

40% 60%

Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

2011 

RDG 

LON

(ft)

Modeled 

LON

 (ft)

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost

60 6000 24 4
8 22 281.4 178.6

Highest Cost-Effectiveness

60 6000 24 4
12 18 225.1 142.9

60 6000 24 4
18 12 140.7 89.3
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $2,230 $0 -

90 910 $1,024 $4,667 $299

130 870 $1,052 $5,858 $375

150 850 $1,057 $6,454 $413

190 810 $1,081 $7,644 $489

200 800 $1,088 $7,942 $508

220 780 $1,139 $8,538 $547

280 720 $1,302 $10,324 $661

310 690 $1,378 $11,217 $718

N/A N/A N/A N/A 0 996 $2,230 $0 -

80 920 $835 $4,370 $280

120 880 $858 $5,561 $356

130 870 $855 $5,858 $375

160 840 $862 $6,751 $432

170 830 $863 $7,049 $451

190 810 $879 $7,644 $489

240 760 $999 $9,133 $585

260 740 $1,044 $9,728 $623

N/A N/A N/A N/A 0 996 $2,230 $0 -

60 940 $702 $3,774 $242

90 910 $736 $4,667 $299

110 890 $730 $5,263 $337

130 870 $731 $5,858 $375

140 860 $728 $6,156 $394

170 830 $738 $7,049 $451

190 810 $781 $7,644 $489

N/A N/A N/A N/A 0 996 $2,230 $0 -

40 960 $746 $3,179 $203

60 940 $883 $3,774 $242

70 930 $915 $4,072 $261

80 920 $951 $4,370 $280

90 910 $973 $4,667 $299

110 890 $1,007 $5,263 $337

120 880 $1,027 $5,561 $356

60%40 40 40%

80 80 30%

50%

90 90 30% 50%

50%

60 60 30%

30% 50%

30% 50%

30% 50%

40% 60%

60 6000 28 0
8 22 295.5 187.5

60 6000 28 0
12 18 246.3 156.3

60 6000 28 0
18 12 172.4 109.4

60 6000 28 0
24 6 98.5 62.5

Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

2011 

RDG 

LON

(ft)

Modeled 

LON

 (ft)

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost Highest Cost-Effectiveness
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $4,915 $0 -

70 930 $1,708 $4,072 $261

100 900 $1,988 $4,965 $318

130 870 $2,208 $5,858 $375

140 860 $2,268 $6,156 $394

170 830 $2,433 $7,049 $451

210 790 $2,621 $8,240 $527

230 770 $2,702 $8,835 $566

N/A N/A N/A N/A 0 996 $3,987 $0 -

80 920 $1,225 $4,370 $280

120 880 $1,349 $5,561 $356

130 870 $1,388 $5,858 $375

160 840 $1,500 $6,751 $432

180 820 $1,583 $7,347 $470

210 790 $1,691 $8,240 $527

260 740 $1,895 $9,728 $623

290 710 $2,014 $10,621 $680

N/A N/A N/A N/A 0 996 $3,987 $0 -

60 940 $916 $3,774 $242

90 910 $1,132 $4,667 $299

100 900 $1,207 $4,965 $318

120 880 $1,336 $5,561 $356

130 870 $1,394 $5,858 $375

150 850 $1,498 $6,454 $413

190 810 $1,649 $7,644 $489

210 790 $1,726 $8,240 $527

60 60 30%

80 80 30%

40%

50%70 70 30%

40%

30% 50%

30% 40%

30% 40%

60 12000 12 16
8 22 213.0 150.0

60 12000 18 10
8 22 271.1 190.9

60 12000 18 10
12 18 193.6 136.4

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost Highest Cost-Effectiveness
Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

2011 

RDG 

LON

(ft)

Modeled 

LON

 (ft)
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $3,485 $0 -

90 910 $1,430 $4,667 $299

140 860 $1,583 $6,156 $394

180 820 $1,613 $7,347 $470

200 800 $1,643 $7,942 $508

230 770 $1,767 $8,835 $566

290 710 $2,013 $10,621 $680

320 680 $2,117 $11,515 $737

N/A N/A N/A N/A 0 996 $3,485 $0 -

70 930 $1,117 $4,072 $261

110 890 $1,229 $5,263 $337

120 880 $1,257 $5,561 $356

150 850 $1,295 $6,454 $413

160 840 $1,302 $6,751 $432

190 810 $1,329 $7,644 $489

240 760 $1,511 $9,133 $585

260 740 $1,579 $9,728 $623

N/A N/A N/A N/A 0 996 $3,485 $0 -

50 950 $915 $3,477 $223

80 920 $1,062 $4,370 $280

100 900 $1,193 $4,965 $318

110 890 $1,259 $5,263 $337

120 880 $1,284 $5,561 $356

150 850 $1,343 $6,454 $413

170 830 $1,367 $7,049 $451

Modeled 

LON

 (ft)

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost

50%

40%

50 50 30%

70 70 30%

40%90 90 30%40%

30% 40%

30% 50%

30%

60 12000 24 4
12 18 243.4 171.4

60 12000 24 4
18 12 152.1 107.1

60 12000 24 4
8 22 304.3 214.3

Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

2011 

RDG 

LON

(ft)

Highest Cost-Effectiveness
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $3,370 $0 -

90 910 $1,548 $4,667 $299

140 860 $1,583 $6,156 $394

150 850 $1,598 $6,454 $413

190 810 $1,633 $7,644 $489

200 800 $1,644 $7,942 $508

240 760 $1,882 $9,133 $585

300 700 $2,047 $10,919 $699

340 660 $2,186 $12,110 $775

N/A N/A N/A N/A 0 996 $3,370 $0 -

80 920 $1,262 $4,370 $280

120 880 $1,297 $5,561 $356

130 870 $1,293 $5,858 $375

160 840 $1,302 $6,751 $432

170 830 $1,304 $7,049 $451

200 800 $1,362 $7,942 $508

260 740 $1,581 $9,728 $623

280 720 $1,648 $10,324 $661

N/A N/A N/A N/A 0 996 $3,370 $0 -

60 940 $1,061 $3,774 $242

90 910 $1,112 $4,667 $299

110 890 $1,103 $5,263 $337

130 870 $1,105 $5,858 $375

150 850 $1,109 $6,454 $413

180 820 $1,146 $7,347 $470

200 800 $1,211 $7,942 $508

N/A N/A N/A N/A 0 996 $3,370 $0 -

40 960 $1,127 $3,179 $203

60 940 $1,334 $3,774 $242

70 930 $1,383 $4,072 $261

80 920 $1,437 $4,370 $280

90 910 $1,471 $4,667 $299

110 890 $1,522 $5,263 $337

120 880 $1,553 $5,561 $356

40 40 40%

60 60 30%

40% 50% 50%

40%

80 80 30%

90 90 30%

40%

50%

30% 40%

30% 40%

30% 50%60 12000 28 0
18 12 186.4 131.3

60 12000 28 0
24 6 106.5 75.0

60 12000 28 0
8 22 319.5 225.0

60 12000 28 0
12 18 266.3 187.5

Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

2011 

RDG 

LON

(ft)

Modeled 

LON

 (ft)

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost Highest Cost-Effectiveness
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $5,299 $0 -

70 930 $1,842 $4,072 $261

100 900 $2,144 $4,965 $318

130 870 $2,381 $5,858 $375

140 860 $2,446 $6,156 $394

170 830 $2,624 $7,049 $451

210 790 $2,826 $8,240 $527

230 770 $2,913 $8,835 $566

N/A N/A N/A N/A 0 996 $4,300 $0 -

80 920 $1,321 $4,370 $280

120 880 $1,455 $5,561 $356

130 870 $1,497 $5,858 $375

160 840 $1,618 $6,751 $432

180 820 $1,707 $7,347 $470

210 790 $1,824 $8,240 $527

260 740 $2,043 $9,728 $623

290 710 $2,172 $10,621 $680

N/A N/A N/A N/A 0 996 $4,300 $0 -

60 940 $988 $3,774 $242

90 910 $1,221 $4,667 $299

100 900 $1,302 $4,965 $318

120 880 $1,440 $5,561 $356

130 870 $1,503 $5,858 $375

150 850 $1,615 $6,454 $413

190 810 $1,778 $7,644 $489

210 790 $1,861 $8,240 $527

40%60 60 30%

60 30000 12 16
8 22 213.0

80 80 30% 40%

150.0
70 70 30% 50%30% 50%

30% 40%

60 30000 18 10
8 22 271.1 190.9

60 30000 18 10
12 18 193.6 136.4

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost Highest Cost-Effectiveness
Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

2011 

RDG 

LON

(ft)

Modeled 

LON

 (ft)

30% 40%
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $3,758 $0 -

90 910 $1,542 $4,667 $299

140 860 $1,707 $6,156 $394

180 820 $1,739 $7,347 $470

200 800 $1,772 $7,942 $508

230 770 $1,905 $8,835 $566

290 710 $2,171 $10,621 $680

320 680 $2,283 $11,515 $737

N/A N/A N/A N/A 0 996 $3,758 $0 -

70 930 $1,204 $4,072 $261

110 890 $1,326 $5,263 $337

120 880 $1,356 $5,561 $356

150 850 $1,396 $6,454 $413

160 840 $1,404 $6,751 $432

190 810 $1,433 $7,644 $489

240 760 $1,629 $9,133 $585

260 740 $1,703 $9,728 $623

N/A N/A N/A N/A 0 996 $3,758 $0 -

50 950 $987 $3,477 $223

80 920 $1,145 $4,370 $280

100 900 $1,286 $4,965 $318

110 890 $1,357 $5,263 $337

120 880 $1,384 $5,561 $356

150 850 $1,448 $6,454 $413

170 830 $1,474 $7,049 $451

90 90 30% 40%

50%

40%

50 50 30%

70 70 30%

30% 40%

30% 40%

30% 50%

60 30000 24 4
8 22 304.3 214.3

60 30000 24 4
12 18 243.4 171.4

60 30000 24 4
18 12 152.1 107.1

Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

2011 

RDG 

LON

(ft)

Modeled 

LON

 (ft)

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost Highest Cost-Effectiveness
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $3,634 $0 -

90 910 $1,669 $4,667 $299

140 860 $1,707 $6,156 $394

150 850 $1,723 $6,454 $413

190 810 $1,761 $7,644 $489

200 800 $1,773 $7,942 $508

240 760 $1,942 $9,133 $585

300 700 $2,207 $10,919 $699

340 660 $2,357 $12,110 $775

N/A N/A N/A N/A 0 996 $3,634 $0 -

80 920 $1,360 $4,370 $280

120 880 $1,398 $5,561 $356

130 870 $1,394 $5,858 $375

160 840 $1,404 $6,751 $432

170 830 $1,406 $7,049 $451

200 800 $1,469 $7,942 $508

260 740 $1,705 $9,728 $623

280 720 $1,777 $10,324 $661

N/A N/A N/A N/A 0 996 $3,634 $0 -

60 940 $1,144 $3,774 $242

90 910 $1,199 $4,667 $299

110 890 $1,190 $5,263 $337

130 870 $1,192 $5,858 $375

150 850 $1,196 $6,454 $413

180 820 $1,236 $7,347 $470

200 800 $1,306 $7,942 $508

N/A N/A N/A N/A 0 996 $3,634 $0 -

40 960 $1,215 $3,179 $203

60 940 $1,439 $3,774 $242

70 930 $1,491 $4,072 $261

80 920 $1,550 $4,370 $280

90 910 $1,586 $4,667 $299

110 890 $1,641 $5,263 $337

120 880 $1,674 $5,561 $356

50%50%60 30000 28 0
24 6

40 40 40%

60 60 30%30% 50%

40%

80 80 30%

90 90 30%

40%30% 40%

30% 40%60 30000 28 0
8 22 319.5 225.0

Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

2011 

RDG 

LON

(ft)

60 30000 28 0
12 18 266.3 187.5

60 30000 28 0
18 12 186.4 131.3

Modeled 

LON

 (ft)

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost Highest Cost-Effectiveness

106.5 75.0

40%

50%
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $5,502 $0 -

70 930 $1,649 $4,072 $261

100 900 $1,837 $4,965 $318

110 890 $1,850 $5,263 $337

130 870 $1,885 $5,858 $375

140 860 $1,898 $6,156 $394

170 830 $2,018 $7,049 $451

220 780 $2,199 $8,538 $547

240 760 $2,262 $9,133 $585

N/A N/A N/A N/A 0 996 $3,920 $0 -

80 920 $1,476 $4,370 $280

130 870 $1,250 $5,858 $375

160 840 $1,305 $6,751 $432

180 820 $1,355 $7,347 $470

210 790 $1,451 $8,240 $527

270 730 $1,522 $10,026 $642

300 700 $1,740 $10,919 $699

N/A N/A N/A N/A 0 996 $3,920 $0 -

60 940 $1,346 $3,774 $242

100 900 $1,123 $4,965 $318

120 880 $1,226 $5,561 $356

130 870 $1,277 $5,858 $375

160 840 $1,398 $6,751 $432

200 800 $1,529 $7,942 $508

220 780 $1,582 $8,538 $547

130 130 50% 60%

70%100 100 50%50% 70%

70 70 30% 40%30% 40%

50% 60%

70 6000 12 16
8 22 221.5 165.0

70 6000 18 10
8 22 281.9 210.0

70 6000 18 10
12 18 201.4 150.0

Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

2011 

RDG 

LON

(ft)

Modeled 

LON

 (ft)

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost Highest Cost-Effectiveness
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $3,507 $0 -

90 910 $2,094 $4,667 $299

140 860 $1,803 $6,156 $394

180 820 $1,492 $7,347 $470

200 800 $1,422 $7,942 $508

240 760 $1,538 $9,133 $585

300 700 $1,741 $10,919 $699

330 670 $1,825 $11,812 $756

N/A N/A N/A N/A 0 996 $3,507 $0 -

70 930 $1,801 $4,072 $261

120 880 $1,493 $5,561 $356

150 850 $1,378 $6,454 $413

160 840 $1,325 $6,751 $432

190 810 $1,255 $7,644 $489

240 760 $1,410 $9,133 $585

270 730 $1,490 $10,026 $642

N/A N/A N/A N/A 0 996 3507 0 -

50 950 1196 3476.66 $223

80 920 1091 4369.76 $280

100 900 1147 4965.16 $318

110 890 1179 5262.86 $337

130 870 1211 5858.26 $375

160 840 1131 6751.36 $432

170 830 1105 7049.06 $451

70 6000 24 4
18 12 158.2 117.9

80%

80%

190 160 60%

200 180 60%60% 80%

80% 100%

24 4
8 22 316.4 235.7

70 6000 24 4
12 18 253.1 188.6

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost Highest Cost-Effectiveness
Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

2011 

RDG 

LON

(ft)

Modeled 

LON

 (ft)

70 6000

80 50% 70% 50 30% 40%
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $3,314 $0 -

90 910 $2,196 $4,667 $299

150 850 $1,857 $6,454 $413

190 810 $1,516 $7,644 $489

200 800 $1,459 $7,942 $508

250 750 $1,573 $9,431 $604

320 680 $1,799 $11,515 $737

350 650 $1,877 $12,408 $794

N/A N/A N/A N/A 0 996 $3,314 $0 -

80 920 $1,988 $4,370 $280

130 870 $1,627 $5,858 $375

160 840 $1,359 $6,751 $432

170 830 $1,306 $7,049 $451

210 790 $1,314 $8,240 $527

270 730 $1,499 $10,026 $642

290 710 $1,544 $10,621 $680

N/A N/A N/A N/A 0 996 $3,314 $0 -

60 940 $1,483 $3,774 $242

90 910 $1,333 $4,667 $299

110 890 $1,174 $5,263 $337

130 870 $1,068 $5,858 $375

150 850 $993 $6,454 $413

190 810 $992 $7,644 $489

210 790 $1,034 $8,240 $527

N/A N/A N/A N/A 0 996 $3,314 $0 -

40 960 $1,256 $3,179 $203

60 940 $1,306 $3,774 $242

70 930 $1,337 $4,072 $261

80 920 $1,334 $4,370 $280

90 910 $1,322 $4,667 $299

120 880 $1,260 $5,561 $356

130 870 $1,231 $5,858 $375

50%

90%

130 40 40%

190 130 70%

120% 160%

70 6000 28

80%

80%

170 170 60%

200 200 60%60% 80%

60% 80%

100% 130%70 6000 28 0
18 12 193.8 144.4

70 6000 28 0
24 6 110.8 82.5

0
8 22 332.3 247.5

70 6000 28 0
12 18 276.9 206.3

Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

2011 

RDG 

LON

(ft)

Modeled 

LON

 (ft)

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost Highest Cost-Effectiveness
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $7,635 $0 -

70 930 $2,493 $4,072 $261

100 900 $2,776 $4,965 $318

110 890 $2,796 $5,263 $337

130 870 $2,850 $5,858 $375

140 860 $2,868 $6,156 $394

180 820 $3,104 $7,347 $470

230 770 $3,383 $8,835 $566

250 750 $3,476 $9,431 $604

N/A N/A N/A N/A 0 996 $5,924 $0 -

80 920 $2,231 $4,370 $280

130 870 $1,889 $5,858 $375

140 860 $1,909 $6,156 $394

160 840 $1,973 $6,751 $432

180 820 $2,048 $7,347 $470

230 770 $2,293 $8,835 $566

290 710 $2,601 $10,621 $680

320 680 $2,719 $11,515 $737

N/A N/A N/A N/A 0 996 $5,924 $0 -

60 940 $1,717 $3,774 $242

100 900 $1,697 $4,965 $318

120 880 $1,854 $5,561 $356

130 870 $1,929 $5,858 $375

170 830 $2,173 $7,049 $451

210 790 $2,363 $8,240 $527

230 770 $2,442 $8,835 $566

130 130 40% 60%

100 60 30% 40%

30% 40%30% 40%

40% 60%

70 12000 12 16
8 22 237.5 180.0

50% 60%

70 12000 18 10
8 22 302.3 229.1

70 12000 18 10
12 18 215.9 163.6

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost Highest Cost-Effectiveness
Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

2011 

RDG 

LON

(ft)

Modeled 

LON

 (ft)

Start 

Station 

(ft)

70 70
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $5,300 $0 -

90 910 $3,165 $4,667 $299

140 860 $2,725 $6,156 $394

150 850 $2,622 $6,454 $413

180 820 $2,255 $7,347 $470

200 800 $2,149 $7,942 $508

250 750 $2,381 $9,431 $604

320 680 $2,723 $11,515 $737

360 640 $2,872 $12,705 $813

N/A N/A N/A N/A 0 996 $5,300 $0 -

70 930 $2,722 $4,072 $261

120 880 $2,256 $5,561 $356

130 870 $2,196 $5,858 $375

150 850 $2,083 $6,454 $413

160 840 $2,003 $6,751 $432

210 790 $1,991 $8,240 $527

260 740 $2,220 $9,728 $623

290 710 $2,337 $10,621 $680

N/A N/A N/A N/A 0 996 $5,300 $0 -

50 950 $1,807 $3,477 $223

80 920 $1,648 $4,370 $280

100 900 $1,734 $4,965 $318

110 890 $1,782 $5,263 $337

140 860 $1,777 $6,156 $394

170 830 $1,682 $7,049 $451

190 810 $1,731 $7,644 $489

60%70 12000 24 4
18 12

210 160 60% 80%

80 80 50%
169.6 128.6

200 200 60% 80%60% 80%

80% 100%

50% 60%

70 12000 24 4
8 22 339.3 257.1

70 12000 24 4
12 18 271.4 205.7

Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

2011 

RDG 

LON

(ft)

Modeled 

LON

 (ft)

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost Highest Cost-Effectiveness
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $5,008 $0 -

90 910 $3,319 $4,667 $299

150 850 $2,806 $6,454 $413

160 840 $2,649 $6,751 $432

190 810 $2,291 $7,644 $489

200 800 $2,205 $7,942 $508

270 730 $2,476 $10,026 $642

340 660 $2,807 $12,110 $775

370 630 $2,914 $13,003 $832

N/A N/A N/A N/A 0 996 $5,008 $0 -

80 920 $3,005 $4,370 $280

130 870 $2,458 $5,858 $375

140 860 $2,305 $6,156 $394

160 840 $2,058 $6,751 $432

170 830 $1,974 $7,049 $451

220 780 $2,024 $8,538 $547

280 720 $2,303 $10,324 $661

310 690 $2,418 $11,217 $718

N/A N/A N/A N/A 0 996 $5,008 $0 -

60 940 $2,241 $3,774 $242

90 910 $2,014 $4,667 $299

100 900 $1,873 $4,965 $318

110 890 $1,775 $5,263 $337

130 870 $1,614 $5,858 $375

160 840 $1,441 $6,751 $432

200 800 $1,546 $7,942 $508

220 780 $1,606 $8,538 $547

N/A N/A N/A N/A 0 996 $5,008 $0 -

40 960 $1,899 $3,179 $203

60 940 $1,973 $3,774 $242

70 930 $2,020 $4,072 $261

80 920 $2,017 $4,370 $280

100 900 $1,963 $4,965 $318

120 880 $1,904 $5,561 $356

140 860 $1,818 $6,156 $394

120% 160%

170 170 60% 80%

140 40 30% 40%

160 160 80% 100%80% 100%

200 200 60% 70%

60% 80%

70 12000 28 0 70%

70 12000 28 0
18 12 207.8 157.5

70 12000 28 0
24 6 118.8 90.0

Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

2011 

RDG 

LON

(ft)

Modeled 

LON

 (ft)

8 22 356.3 270.0

70 12000 28 0
12 18 296.9 225.0

60%

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost Highest Cost-Effectiveness



 

 

1
3
1
 

A
u

g
u

st 1
2

, 2
0
1

4
 

M
w

R
S

F
 R

ep
o

rt N
o
. T

R
P

-0
3

-2
8
4
-1

4
 

 

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $8,233 $0 -

70 930 $2,688 $4,072 $261

100 900 $2,994 $4,965 $318

110 890 $3,015 $5,263 $337

130 870 $3,073 $5,858 $375

140 860 $3,093 $6,156 $394

180 820 $3,346 $7,347 $470

230 770 $3,648 $8,835 $566

250 750 $3,748 $9,431 $604

N/A N/A N/A N/A 0 996 $6,388 $0 -

80 920 $2,406 $4,370 $280

130 870 $2,036 $5,858 $375

140 860 $2,059 $6,156 $394

160 840 $2,127 $6,751 $432

180 820 $2,209 $7,347 $470

230 770 $2,472 $8,835 $566

290 710 $2,804 $10,621 $680

320 680 $2,932 $11,515 $737

N/A N/A N/A N/A 0 996 $6,388 $0 -

60 940 $1,852 $3,774 $242

100 900 $1,829 $4,965 $318

120 880 $1,999 $5,561 $356

130 870 $2,080 $5,858 $375

170 830 $2,343 $7,049 $451

210 790 $2,548 $8,240 $527

230 770 $2,633 $8,835 $566

40%70 30000 18 10
12 18

130 130 40%40% 60%

50% 60%
215.9 163.6

60%

100 60 30%

70 70 30% 40%30% 40%70 30000 12 16
8 22 237.5 180.0

70 30000 18 10
8 22 302.3 229.1

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

2011 

RDG 

LON

(ft)

Modeled 

LON

 (ft)

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost Highest Cost-Effectiveness
Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $5,715 $0 -

90 910 $3,413 $4,667 $299

140 860 $2,938 $6,156 $394

150 850 $2,827 $6,454 $413

180 820 $2,431 $7,347 $470

200 800 $2,318 $7,942 $508

250 750 $2,567 $9,431 $604

320 680 $2,936 $11,515 $737

360 640 $3,096 $12,705 $813

N/A N/A N/A N/A 0 996 $5,715 $0 -

70 930 $2,935 $4,072 $261

120 880 $2,433 $5,561 $356

130 870 $2,367 $5,858 $375

150 850 $2,246 $6,454 $413

160 840 $2,160 $6,751 $432

210 790 $2,147 $8,240 $527

260 740 $2,394 $9,728 $623

290 710 $2,520 $10,621 $680

N/A N/A N/A N/A 0 996 $5,715 $0 -

50 950 $1,949 $3,477 $223

80 920 $1,777 $4,370 $280

100 900 $1,869 $4,965 $318

110 890 $1,921 $5,263 $337

140 860 $1,916 $6,156 $394

170 830 $1,814 $7,049 $451

190 810 $1,867 $7,644 $489

210 160 60% 80%

80 80 50% 60%50% 60%

200 200 60% 80%60% 80%

80% 100%

70

Start 

Station 

(ft)

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost Highest Cost-Effectiveness

30000 24 4
8 22 339.3 257.1

70 30000 24 4
12 18 271.4 205.7

70 30000 24 4
18 12 169.6 128.6

Posted 

Speed 

Limit 

(mph)

ADT
Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

2011 

RDG 

LON

(ft)

Modeled 

LON

 (ft)
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Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

Guardrail 

Length,

X* (ft)

% 2006 

RDG

% 2011 

RDG

N/A N/A N/A N/A 0 996 $5,400 $0 -

90 910 $3,579 $4,667 $299

150 850 $3,026 $6,454 $413

160 840 $2,856 $6,751 $432

190 810 $2,470 $7,644 $489

200 800 $2,377 $7,942 $508

270 730 $2,670 $10,026 $642

340 660 $3,027 $12,110 $775

370 630 $3,142 $13,003 $832

N/A N/A N/A N/A 0 996 $5,400 $0 -

80 920 $3,240 $4,370 $280

130 870 $2,651 $5,858 $375

140 860 $2,486 $6,156 $394

160 840 $2,215 $6,751 $432

170 830 $2,128 $7,049 $451

220 780 $2,182 $8,538 $547

280 720 $2,484 $10,324 $661

310 690 $2,607 $11,217 $718

N/A N/A N/A N/A 0 996 $5,400 $0 -

60 940 $2,416 $3,774 $242

90 910 $2,172 $4,667 $299

100 900 $2,019 $4,965 $318

110 890 $1,914 $5,263 $337

130 870 $1,740 $5,858 $375

160 840 $1,554 $6,751 $432

200 800 $1,667 $7,942 $508

220 780 $1,731 $8,538 $547

N/A N/A N/A N/A 0 996 $5,400 $0 -

40 960 $2,047 $3,179 $203

60 940 $2,128 $3,774 $242

70 930 $2,178 $4,072 $261

80 920 $2,175 $4,370 $280

100 900 $2,116 $4,965 $318

120 880 $2,053 $5,561 $356

140 860 $1,960 $6,156 $394

160 160 80%

40%

100%

140 40 30%

170

Modeled 

LON

 (ft)

Start 

Station 

(ft)

170 60% 80%60% 80%

200 200 60% 70%60% 70%

80% 100%

120% 160%

Hazard 

Offset (ft)

RSAP 

Hazard 

Offset

(ft)

Guardrail 

Offset

(ft)

RSAP 

Guardrail 

Offset

(ft)

2006 

RDG 

LON

(ft)

2011 

RDG 

LON

(ft)

28 0
12 18 296.9 225.0

70 30000 28 0
18 12 207.8 157.5

70 30000 28 0
8 22 356.3 270.0

Posted 

Speed 

Limit 

(mph)

ADT

70 30000 28 0
24 6 118.8 90.0

70 30000

Annual 

Crash Cost

Construction 

Cost

Annualized 

Construction 

Cost

Lowest Crash Cost Highest Cost-Effectiveness
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